清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Diagnosis of obstructive sleep apnea with prediction of flow characteristics according to airway morphology automatically extracted from medical images: Computational fluid dynamics and artificial intelligence approach

阻塞性睡眠呼吸暂停 计算机科学 气道 计算流体力学 形态学(生物学) 人工智能 医学 内科学 外科 工程类 航空航天工程 地质学 古生物学
作者
Susie Ryu,Jun Hong Kim,Heejin Yu,Hwi-Dong Jung,Suk Won Chang,Jeong Jin Park,Soon-Hyuk Hong,Hyung‐Ju Cho,Yoon Jeong Choi,Jongeun Choi,Joon Sang Lee
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:208: 106243-106243 被引量:16
标识
DOI:10.1016/j.cmpb.2021.106243
摘要

• Created deep learning algorithm for automatic upper airway morphology segmentation. • Examined effect of data resolution on obstructive sleep apnea diagnosis accuracy. • Analyzed flow characteristics according to airway morphological factors. • Developed diagnosis obstructive sleep apnea method with flow characteristics and biometric features. • Suggest convenient and fast obstructive sleep apnea syndrome diagnosis method. Obstructive sleep apnea syndrome (OSAS) is being observed in an increasing number of cases. It can be diagnosed using several methods such as polysomnography. To overcome the challenges of time and cost faced by conventional diagnostic methods, this paper proposes computational fluid dynamics (CFD) and machine-learning approaches that are derived from the upper-airway morphology with automatic segmentation using deep learning. We adopted a 3D UNet deep-learning model to perform medical image segmentation. 3D UNet prevents the feature-extraction loss that may occur by concatenating layers and extracts the anteroposterior coordination and width of the airway morphology. To create flow characteristics of the upper airway training data, we analyzed the changes in flow characteristics according to the upper-airway morphology using CFD. A multivariate Gaussian process regression (MVGPR) model was used to train the flow characteristic values. The trained MVGPR enables the prompt prediction of the aerodynamic features of the upper airway without simulation. Unlike conventional regression methods, MVGPR can be trained by considering the correlation between the flow characteristics. As a diagnostic step, a support vector machine (SVM) with predicted aerodynamic and biometric features was used in this study to classify patients as healthy or suffering from moderate OSAS. SVM is beneficial as it is easy to learn even with a small dataset, and it can diagnose various flow characteristics as factors while enhancing the feature via the kernel function. As the patient dataset is small, the Monte Carlo cross-validation was used to validate the trained model. Furthermore, to overcome the imbalanced data problem, the oversampling method was applied. The segmented upper-airway results of the high-resolution and low-resolution models present overall average dice coefficients of 0.76±0.041 and 0.74±0.052, respectively. Furthermore, the classification accuracy, sensitivity, specificity, and F1-score of the diagnosis algorithm were 81.5%, 89.3%, 86.2%, and 87.6%, respectively. The convenience and accuracy of sleep apnea diagnosis are improved using deep learning and machine learning. Further, the proposed method can aid clinicians in making appropriate decisions to evaluate the possible applications of OSAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
朴素绿蝶发布了新的文献求助10
22秒前
默默完成签到 ,获得积分10
47秒前
yuyu877完成签到 ,获得积分10
48秒前
蓝白完成签到,获得积分10
1分钟前
李肉多爱吃肉完成签到 ,获得积分10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
赘婿应助完美芒果采纳,获得30
1分钟前
2分钟前
完美芒果发布了新的文献求助30
2分钟前
欢喜的早晨完成签到,获得积分10
2分钟前
2分钟前
2分钟前
vbnn完成签到 ,获得积分10
3分钟前
Jessica完成签到,获得积分10
3分钟前
葡萄成熟时完成签到 ,获得积分10
3分钟前
酷炫抽屉完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
TOUHOUU完成签到 ,获得积分10
4分钟前
trophozoite完成签到 ,获得积分10
4分钟前
wodetaiyangLLL完成签到 ,获得积分10
5分钟前
5分钟前
Gryff完成签到 ,获得积分10
6分钟前
D調完成签到,获得积分10
6分钟前
高高天亦完成签到 ,获得积分10
6分钟前
王一一完成签到,获得积分10
6分钟前
忆茶戏完成签到 ,获得积分10
6分钟前
silence完成签到 ,获得积分10
6分钟前
彭于晏应助迷你的心情采纳,获得10
7分钟前
furin001完成签到,获得积分10
7分钟前
可可完成签到,获得积分20
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
田様应助科研通管家采纳,获得10
7分钟前
7分钟前
Owen应助科研通管家采纳,获得10
7分钟前
7分钟前
CipherSage应助lalalapa666采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5368188
求助须知:如何正确求助?哪些是违规求助? 4496125
关于积分的说明 13996660
捐赠科研通 4401212
什么是DOI,文献DOI怎么找? 2417724
邀请新用户注册赠送积分活动 1410453
关于科研通互助平台的介绍 1386142