Diagnosis of obstructive sleep apnea with prediction of flow characteristics according to airway morphology automatically extracted from medical images: Computational fluid dynamics and artificial intelligence approach

阻塞性睡眠呼吸暂停 计算机科学 气道 计算流体力学 形态学(生物学) 人工智能 医学 内科学 外科 工程类 航空航天工程 地质学 古生物学
作者
Susie Ryu,Jun Hong Kim,Heejin Yu,Hwi-Dong Jung,Suk Won Chang,Jeong Jin Park,Soon-Hyuk Hong,Hyung‐Ju Cho,Yoon Jeong Choi,Jongeun Choi,Joon Sang Lee
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:208: 106243-106243 被引量:16
标识
DOI:10.1016/j.cmpb.2021.106243
摘要

• Created deep learning algorithm for automatic upper airway morphology segmentation. • Examined effect of data resolution on obstructive sleep apnea diagnosis accuracy. • Analyzed flow characteristics according to airway morphological factors. • Developed diagnosis obstructive sleep apnea method with flow characteristics and biometric features. • Suggest convenient and fast obstructive sleep apnea syndrome diagnosis method. Obstructive sleep apnea syndrome (OSAS) is being observed in an increasing number of cases. It can be diagnosed using several methods such as polysomnography. To overcome the challenges of time and cost faced by conventional diagnostic methods, this paper proposes computational fluid dynamics (CFD) and machine-learning approaches that are derived from the upper-airway morphology with automatic segmentation using deep learning. We adopted a 3D UNet deep-learning model to perform medical image segmentation. 3D UNet prevents the feature-extraction loss that may occur by concatenating layers and extracts the anteroposterior coordination and width of the airway morphology. To create flow characteristics of the upper airway training data, we analyzed the changes in flow characteristics according to the upper-airway morphology using CFD. A multivariate Gaussian process regression (MVGPR) model was used to train the flow characteristic values. The trained MVGPR enables the prompt prediction of the aerodynamic features of the upper airway without simulation. Unlike conventional regression methods, MVGPR can be trained by considering the correlation between the flow characteristics. As a diagnostic step, a support vector machine (SVM) with predicted aerodynamic and biometric features was used in this study to classify patients as healthy or suffering from moderate OSAS. SVM is beneficial as it is easy to learn even with a small dataset, and it can diagnose various flow characteristics as factors while enhancing the feature via the kernel function. As the patient dataset is small, the Monte Carlo cross-validation was used to validate the trained model. Furthermore, to overcome the imbalanced data problem, the oversampling method was applied. The segmented upper-airway results of the high-resolution and low-resolution models present overall average dice coefficients of 0.76±0.041 and 0.74±0.052, respectively. Furthermore, the classification accuracy, sensitivity, specificity, and F1-score of the diagnosis algorithm were 81.5%, 89.3%, 86.2%, and 87.6%, respectively. The convenience and accuracy of sleep apnea diagnosis are improved using deep learning and machine learning. Further, the proposed method can aid clinicians in making appropriate decisions to evaluate the possible applications of OSAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助阿梅梅梅采纳,获得10
刚刚
清秋1001完成签到,获得积分10
1秒前
大个应助Leon采纳,获得10
1秒前
1秒前
魏为维发布了新的文献求助10
1秒前
星点点发布了新的文献求助10
2秒前
3秒前
YY完成签到,获得积分10
4秒前
小河发布了新的文献求助20
4秒前
SYLH应助ShujieWang采纳,获得10
4秒前
须臾完成签到,获得积分10
6秒前
scitiancai发布了新的文献求助10
6秒前
6秒前
lihuachen91完成签到,获得积分20
7秒前
8秒前
哈哈尼完成签到,获得积分10
8秒前
腾腾腾发布了新的文献求助10
8秒前
聪明勇敢有力气完成签到 ,获得积分10
8秒前
8秒前
幻想之地Home完成签到,获得积分10
9秒前
11秒前
CodeCraft应助贪玩飞机采纳,获得10
11秒前
11秒前
Jasper应助星点点采纳,获得10
11秒前
12秒前
SYLH应助踏实语海采纳,获得50
12秒前
懒羊羊发布了新的文献求助10
12秒前
zoe完成签到,获得积分20
12秒前
量子星尘发布了新的文献求助10
13秒前
Gyx完成签到,获得积分10
13秒前
怡然的一斩完成签到,获得积分10
13秒前
顾矜应助Yolen LI采纳,获得10
14秒前
哈哈哈哈完成签到,获得积分10
14秒前
Leon发布了新的文献求助10
14秒前
15秒前
化学小学生完成签到,获得积分10
15秒前
15秒前
yangyag完成签到 ,获得积分10
16秒前
飞飞发布了新的文献求助30
17秒前
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011327
求助须知:如何正确求助?哪些是违规求助? 3551014
关于积分的说明 11307268
捐赠科研通 3285224
什么是DOI,文献DOI怎么找? 1811001
邀请新用户注册赠送积分活动 886685
科研通“疑难数据库(出版商)”最低求助积分说明 811597