Diagnosis of obstructive sleep apnea with prediction of flow characteristics according to airway morphology automatically extracted from medical images: Computational fluid dynamics and artificial intelligence approach

阻塞性睡眠呼吸暂停 计算机科学 气道 计算流体力学 形态学(生物学) 人工智能 医学 内科学 外科 工程类 航空航天工程 地质学 古生物学
作者
Susie Ryu,Jun Hong Kim,Heejin Yu,Hwi-Dong Jung,Suk Won Chang,Jeong Jin Park,Soon-Hyuk Hong,Hyung‐Ju Cho,Yoon Jeong Choi,Jongeun Choi,Joon Sang Lee
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:208: 106243-106243 被引量:15
标识
DOI:10.1016/j.cmpb.2021.106243
摘要

• Created deep learning algorithm for automatic upper airway morphology segmentation. • Examined effect of data resolution on obstructive sleep apnea diagnosis accuracy. • Analyzed flow characteristics according to airway morphological factors. • Developed diagnosis obstructive sleep apnea method with flow characteristics and biometric features. • Suggest convenient and fast obstructive sleep apnea syndrome diagnosis method. Obstructive sleep apnea syndrome (OSAS) is being observed in an increasing number of cases. It can be diagnosed using several methods such as polysomnography. To overcome the challenges of time and cost faced by conventional diagnostic methods, this paper proposes computational fluid dynamics (CFD) and machine-learning approaches that are derived from the upper-airway morphology with automatic segmentation using deep learning. We adopted a 3D UNet deep-learning model to perform medical image segmentation. 3D UNet prevents the feature-extraction loss that may occur by concatenating layers and extracts the anteroposterior coordination and width of the airway morphology. To create flow characteristics of the upper airway training data, we analyzed the changes in flow characteristics according to the upper-airway morphology using CFD. A multivariate Gaussian process regression (MVGPR) model was used to train the flow characteristic values. The trained MVGPR enables the prompt prediction of the aerodynamic features of the upper airway without simulation. Unlike conventional regression methods, MVGPR can be trained by considering the correlation between the flow characteristics. As a diagnostic step, a support vector machine (SVM) with predicted aerodynamic and biometric features was used in this study to classify patients as healthy or suffering from moderate OSAS. SVM is beneficial as it is easy to learn even with a small dataset, and it can diagnose various flow characteristics as factors while enhancing the feature via the kernel function. As the patient dataset is small, the Monte Carlo cross-validation was used to validate the trained model. Furthermore, to overcome the imbalanced data problem, the oversampling method was applied. The segmented upper-airway results of the high-resolution and low-resolution models present overall average dice coefficients of 0.76±0.041 and 0.74±0.052, respectively. Furthermore, the classification accuracy, sensitivity, specificity, and F1-score of the diagnosis algorithm were 81.5%, 89.3%, 86.2%, and 87.6%, respectively. The convenience and accuracy of sleep apnea diagnosis are improved using deep learning and machine learning. Further, the proposed method can aid clinicians in making appropriate decisions to evaluate the possible applications of OSAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助garyaa采纳,获得10
刚刚
DAN_完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助屹舟采纳,获得10
1秒前
科研通AI5应助一一采纳,获得10
2秒前
隐形的紫菜完成签到,获得积分10
2秒前
23132发布了新的文献求助10
3秒前
cora完成签到,获得积分10
4秒前
放眼天下完成签到 ,获得积分10
5秒前
文毛完成签到,获得积分10
5秒前
5秒前
6秒前
兴奋的问旋完成签到,获得积分10
6秒前
张张完成签到,获得积分10
6秒前
陈文学完成签到,获得积分10
7秒前
一一发布了新的文献求助10
7秒前
bkagyin应助潇洒的冷玉采纳,获得10
8秒前
通~发布了新的文献求助10
8秒前
8秒前
芒果完成签到,获得积分10
8秒前
9秒前
cly3397完成签到,获得积分10
9秒前
开心发布了新的文献求助10
9秒前
9秒前
少年发布了新的文献求助10
10秒前
天天快乐应助阿毛采纳,获得10
10秒前
Jenny应助狂野的以珊采纳,获得10
10秒前
11秒前
11秒前
12秒前
13秒前
研友_LMNjkn发布了新的文献求助10
13秒前
ding应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
yizhiGao应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794