清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Diagnosis of obstructive sleep apnea with prediction of flow characteristics according to airway morphology automatically extracted from medical images: Computational fluid dynamics and artificial intelligence approach

阻塞性睡眠呼吸暂停 计算机科学 气道 计算流体力学 形态学(生物学) 人工智能 医学 内科学 外科 工程类 航空航天工程 地质学 古生物学
作者
Susie Ryu,Jun Hong Kim,Heejin Yu,Hwi-Dong Jung,Suk Won Chang,Jeong Jin Park,Soon-Hyuk Hong,Hyung‐Ju Cho,Yoon Jeong Choi,Jongeun Choi,Joon Sang Lee
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:208: 106243-106243 被引量:15
标识
DOI:10.1016/j.cmpb.2021.106243
摘要

• Created deep learning algorithm for automatic upper airway morphology segmentation. • Examined effect of data resolution on obstructive sleep apnea diagnosis accuracy. • Analyzed flow characteristics according to airway morphological factors. • Developed diagnosis obstructive sleep apnea method with flow characteristics and biometric features. • Suggest convenient and fast obstructive sleep apnea syndrome diagnosis method. Obstructive sleep apnea syndrome (OSAS) is being observed in an increasing number of cases. It can be diagnosed using several methods such as polysomnography. To overcome the challenges of time and cost faced by conventional diagnostic methods, this paper proposes computational fluid dynamics (CFD) and machine-learning approaches that are derived from the upper-airway morphology with automatic segmentation using deep learning. We adopted a 3D UNet deep-learning model to perform medical image segmentation. 3D UNet prevents the feature-extraction loss that may occur by concatenating layers and extracts the anteroposterior coordination and width of the airway morphology. To create flow characteristics of the upper airway training data, we analyzed the changes in flow characteristics according to the upper-airway morphology using CFD. A multivariate Gaussian process regression (MVGPR) model was used to train the flow characteristic values. The trained MVGPR enables the prompt prediction of the aerodynamic features of the upper airway without simulation. Unlike conventional regression methods, MVGPR can be trained by considering the correlation between the flow characteristics. As a diagnostic step, a support vector machine (SVM) with predicted aerodynamic and biometric features was used in this study to classify patients as healthy or suffering from moderate OSAS. SVM is beneficial as it is easy to learn even with a small dataset, and it can diagnose various flow characteristics as factors while enhancing the feature via the kernel function. As the patient dataset is small, the Monte Carlo cross-validation was used to validate the trained model. Furthermore, to overcome the imbalanced data problem, the oversampling method was applied. The segmented upper-airway results of the high-resolution and low-resolution models present overall average dice coefficients of 0.76±0.041 and 0.74±0.052, respectively. Furthermore, the classification accuracy, sensitivity, specificity, and F1-score of the diagnosis algorithm were 81.5%, 89.3%, 86.2%, and 87.6%, respectively. The convenience and accuracy of sleep apnea diagnosis are improved using deep learning and machine learning. Further, the proposed method can aid clinicians in making appropriate decisions to evaluate the possible applications of OSAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石勒苏益格完成签到,获得积分10
刚刚
跳跃太清完成签到 ,获得积分10
6秒前
11秒前
19秒前
43秒前
田田完成签到 ,获得积分10
49秒前
江三村完成签到 ,获得积分10
1分钟前
世间安得双全法完成签到,获得积分0
1分钟前
狮子完成签到,获得积分10
1分钟前
aowulan完成签到 ,获得积分10
1分钟前
cadcae完成签到,获得积分10
1分钟前
1分钟前
Yimi刘博完成签到 ,获得积分10
1分钟前
稳重秋寒完成签到 ,获得积分10
2分钟前
2分钟前
Shirley发布了新的文献求助10
2分钟前
双眼皮跳蚤完成签到,获得积分10
2分钟前
激流勇进wb完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
zhangxr发布了新的文献求助10
2分钟前
研友_LmgOaZ完成签到 ,获得积分0
3分钟前
火箭Lucky完成签到 ,获得积分10
3分钟前
oaoalaa完成签到 ,获得积分10
3分钟前
Charlie完成签到 ,获得积分10
3分钟前
自由飞翔完成签到 ,获得积分10
3分钟前
Shirley发布了新的文献求助10
3分钟前
若眠完成签到 ,获得积分10
4分钟前
小蘑菇应助zhangxr采纳,获得10
4分钟前
开心每一天完成签到 ,获得积分10
4分钟前
Shrimp完成签到 ,获得积分10
5分钟前
执着晓亦完成签到 ,获得积分10
5分钟前
在水一方应助fox采纳,获得10
5分钟前
缥缈映安完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
fox发布了新的文献求助10
6分钟前
zhzh0618完成签到,获得积分10
6分钟前
糖宝完成签到 ,获得积分10
7分钟前
夏林完成签到,获得积分10
7分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162346
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899776
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142