Diagnosis of obstructive sleep apnea with prediction of flow characteristics according to airway morphology automatically extracted from medical images: Computational fluid dynamics and artificial intelligence approach

阻塞性睡眠呼吸暂停 计算机科学 气道 计算流体力学 形态学(生物学) 人工智能 医学 内科学 外科 工程类 航空航天工程 地质学 古生物学
作者
Susie Ryu,Jun Hong Kim,Heejin Yu,Hwi-Dong Jung,Suk Won Chang,Jeong Jin Park,Soon-Hyuk Hong,Hyung‐Ju Cho,Yoon Jeong Choi,Jongeun Choi,Joon Sang Lee
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:208: 106243-106243 被引量:16
标识
DOI:10.1016/j.cmpb.2021.106243
摘要

• Created deep learning algorithm for automatic upper airway morphology segmentation. • Examined effect of data resolution on obstructive sleep apnea diagnosis accuracy. • Analyzed flow characteristics according to airway morphological factors. • Developed diagnosis obstructive sleep apnea method with flow characteristics and biometric features. • Suggest convenient and fast obstructive sleep apnea syndrome diagnosis method. Obstructive sleep apnea syndrome (OSAS) is being observed in an increasing number of cases. It can be diagnosed using several methods such as polysomnography. To overcome the challenges of time and cost faced by conventional diagnostic methods, this paper proposes computational fluid dynamics (CFD) and machine-learning approaches that are derived from the upper-airway morphology with automatic segmentation using deep learning. We adopted a 3D UNet deep-learning model to perform medical image segmentation. 3D UNet prevents the feature-extraction loss that may occur by concatenating layers and extracts the anteroposterior coordination and width of the airway morphology. To create flow characteristics of the upper airway training data, we analyzed the changes in flow characteristics according to the upper-airway morphology using CFD. A multivariate Gaussian process regression (MVGPR) model was used to train the flow characteristic values. The trained MVGPR enables the prompt prediction of the aerodynamic features of the upper airway without simulation. Unlike conventional regression methods, MVGPR can be trained by considering the correlation between the flow characteristics. As a diagnostic step, a support vector machine (SVM) with predicted aerodynamic and biometric features was used in this study to classify patients as healthy or suffering from moderate OSAS. SVM is beneficial as it is easy to learn even with a small dataset, and it can diagnose various flow characteristics as factors while enhancing the feature via the kernel function. As the patient dataset is small, the Monte Carlo cross-validation was used to validate the trained model. Furthermore, to overcome the imbalanced data problem, the oversampling method was applied. The segmented upper-airway results of the high-resolution and low-resolution models present overall average dice coefficients of 0.76±0.041 and 0.74±0.052, respectively. Furthermore, the classification accuracy, sensitivity, specificity, and F1-score of the diagnosis algorithm were 81.5%, 89.3%, 86.2%, and 87.6%, respectively. The convenience and accuracy of sleep apnea diagnosis are improved using deep learning and machine learning. Further, the proposed method can aid clinicians in making appropriate decisions to evaluate the possible applications of OSAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
01skystriker完成签到,获得积分10
刚刚
刚刚
金乌发布了新的文献求助10
刚刚
Hello应助yyyy采纳,获得10
刚刚
Ava应助霜幕采纳,获得10
刚刚
shiyue发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
Wind应助木棉采纳,获得10
1秒前
DRDOC发布了新的文献求助10
2秒前
大个应助白诺言采纳,获得10
2秒前
朴淑芬发布了新的文献求助10
2秒前
2秒前
zm发布了新的文献求助10
2秒前
板砖机完成签到,获得积分10
2秒前
3秒前
3秒前
ZIYU发布了新的文献求助10
3秒前
4秒前
斯文败类应助caicai采纳,获得10
4秒前
Renn应助喜之郎采纳,获得10
4秒前
Xzj发布了新的文献求助10
4秒前
Akim应助屈洪娇采纳,获得10
5秒前
5秒前
思源应助愉快的莹采纳,获得10
5秒前
上官若男应助lyz0123采纳,获得10
6秒前
溪鱼完成签到,获得积分10
6秒前
万能图书馆应助奇妙淞采纳,获得10
6秒前
传奇3应助要减肥冰菱采纳,获得10
6秒前
zmy完成签到,获得积分10
6秒前
yan完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
6666发布了新的文献求助10
8秒前
Kka完成签到 ,获得积分10
8秒前
8秒前
Ashely完成签到,获得积分20
8秒前
浮游应助Khr1stINK采纳,获得10
9秒前
刘振坤完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444