Automatic skull defect restoration and cranial implant generation for cranioplasty

颅骨成形术 计算机科学 颅骨 卷积神经网络 人工智能 体素 分割 计算机视觉 任务(项目管理) 医学 解剖 工程类 系统工程
作者
Jianning Li,Gord von Campe,Antonio Pepe,Christina Gsaxner,Enpeng Wang,Xiaojun Chen,Ulrike Zefferer,Martin Tödtling,Marcell Krall,Hannes Deutschmann,Ute Schäfer,Dieter Schmalstieg,Jan Egger
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:73: 102171-102171 被引量:33
标识
DOI:10.1016/j.media.2021.102171
摘要

A fast and fully automatic design of 3D printed patient-specific cranial implants is highly desired in cranioplasty - the process to restore a defect on the skull. We formulate skull defect restoration as a 3D volumetric shape completion task, where a partial skull volume is completed automatically. The difference between the completed skull and the partial skull is the restored defect; in other words, the implant that can be used in cranioplasty. To fulfill the task of volumetric shape completion, a fully data-driven approach is proposed. Supervised skull shape learning is performed on a database containing 167 high-resolution healthy skulls. In these skulls, synthetic defects are injected to create training and evaluation data pairs. We propose a patch-based training scheme tailored for dealing with high-resolution and spatially sparse data, which overcomes the disadvantages of conventional patch-based training methods in high-resolution volumetric shape completion tasks. In particular, the conventional patch-based training is applied to images of high resolution and proves to be effective in tasks such as segmentation. However, we demonstrate the limitations of conventional patch-based training for shape completion tasks, where the overall shape distribution of the target has to be learnt, since it cannot be captured efficiently by a sub-volume cropped from the target. Additionally, the standard dense implementation of a convolutional neural network tends to perform poorly on sparse data, such as the skull, which has a low voxel occupancy rate. Our proposed training scheme encourages a convolutional neural network to learn from the high-resolution and spatially sparse data. In our study, we show that our deep learning models, trained on healthy skulls with synthetic defects, can be transferred directly to craniotomy skulls with real defects of greater irregularity, and the results show promise for clinical use. Project page: https://github.com/Jianningli/MIA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
1秒前
dtxr发布了新的文献求助10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
汉堡肉应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
Alex应助科研通管家采纳,获得30
1秒前
科研黑洞发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
年轻花卷发布了新的文献求助10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
打打应助潇潇采纳,获得10
2秒前
2秒前
2秒前
3秒前
赘婿应助JASMINE采纳,获得10
3秒前
3秒前
鸣鸣完成签到,获得积分10
3秒前
万能图书馆应助hyy采纳,获得10
4秒前
comma发布了新的文献求助20
4秒前
4秒前
从容的野狼完成签到,获得积分10
4秒前
wenhao完成签到,获得积分10
4秒前
4秒前
4秒前
llll完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532074
求助须知:如何正确求助?哪些是违规求助? 4620885
关于积分的说明 14575515
捐赠科研通 4560631
什么是DOI,文献DOI怎么找? 2498949
邀请新用户注册赠送积分活动 1478926
关于科研通互助平台的介绍 1450179