Automatic skull defect restoration and cranial implant generation for cranioplasty

颅骨成形术 计算机科学 颅骨 卷积神经网络 人工智能 体素 分割 计算机视觉 任务(项目管理) 医学 解剖 工程类 系统工程
作者
Jianning Li,Gord von Campe,Antonio Pepe,Christina Gsaxner,Enpeng Wang,Xiaojun Chen,Ulrike Zefferer,Martin Tödtling,Marcell Krall,Hannes Deutschmann,Ute Schäfer,Dieter Schmalstieg,Jan Egger
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:73: 102171-102171 被引量:33
标识
DOI:10.1016/j.media.2021.102171
摘要

A fast and fully automatic design of 3D printed patient-specific cranial implants is highly desired in cranioplasty - the process to restore a defect on the skull. We formulate skull defect restoration as a 3D volumetric shape completion task, where a partial skull volume is completed automatically. The difference between the completed skull and the partial skull is the restored defect; in other words, the implant that can be used in cranioplasty. To fulfill the task of volumetric shape completion, a fully data-driven approach is proposed. Supervised skull shape learning is performed on a database containing 167 high-resolution healthy skulls. In these skulls, synthetic defects are injected to create training and evaluation data pairs. We propose a patch-based training scheme tailored for dealing with high-resolution and spatially sparse data, which overcomes the disadvantages of conventional patch-based training methods in high-resolution volumetric shape completion tasks. In particular, the conventional patch-based training is applied to images of high resolution and proves to be effective in tasks such as segmentation. However, we demonstrate the limitations of conventional patch-based training for shape completion tasks, where the overall shape distribution of the target has to be learnt, since it cannot be captured efficiently by a sub-volume cropped from the target. Additionally, the standard dense implementation of a convolutional neural network tends to perform poorly on sparse data, such as the skull, which has a low voxel occupancy rate. Our proposed training scheme encourages a convolutional neural network to learn from the high-resolution and spatially sparse data. In our study, we show that our deep learning models, trained on healthy skulls with synthetic defects, can be transferred directly to craniotomy skulls with real defects of greater irregularity, and the results show promise for clinical use. Project page: https://github.com/Jianningli/MIA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
11完成签到,获得积分10
2秒前
安详砖家发布了新的文献求助10
2秒前
3秒前
EMMACao完成签到,获得积分10
3秒前
xky200125完成签到 ,获得积分10
4秒前
超级板凳完成签到,获得积分10
5秒前
rationality完成签到,获得积分10
5秒前
jojo完成签到 ,获得积分10
6秒前
Jay发布了新的文献求助10
7秒前
7秒前
zyn发布了新的文献求助10
7秒前
传奇3应助ei采纳,获得10
10秒前
7分运气完成签到,获得积分10
10秒前
MARIO发布了新的文献求助10
12秒前
小呆鹿完成签到,获得积分10
12秒前
天真的白凡完成签到 ,获得积分10
14秒前
YG完成签到,获得积分10
14秒前
14秒前
15秒前
QiJiLuLu完成签到,获得积分10
16秒前
无花果应助ATOM采纳,获得10
16秒前
Werner完成签到 ,获得积分10
16秒前
16秒前
17秒前
乐乐完成签到 ,获得积分10
17秒前
19秒前
初初见你发布了新的文献求助10
19秒前
Rui_Rui发布了新的文献求助10
20秒前
合适清完成签到,获得积分10
21秒前
自然幻竹完成签到,获得积分10
21秒前
渣渣凡完成签到,获得积分10
22秒前
automan发布了新的文献求助10
22秒前
23秒前
yang完成签到,获得积分10
24秒前
桑榆发布了新的文献求助10
25秒前
NexusExplorer应助LPP采纳,获得10
27秒前
香蕉觅云应助chiweiyoung采纳,获得10
27秒前
28秒前
29秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339290
求助须知:如何正确求助?哪些是违规求助? 4476138
关于积分的说明 13930647
捐赠科研通 4371604
什么是DOI,文献DOI怎么找? 2401978
邀请新用户注册赠送积分活动 1394933
关于科研通互助平台的介绍 1366848