V$^3$H: View Variation and View Heredity for Incomplete Multiview Clustering

聚类分析 遗传 计算机科学 水准点(测量) 变化(天文学) 秩(图论) 人工智能 代表(政治) 数据挖掘 数学 组合数学 生物 遗传学 地理 物理 法学 大地测量学 政治 天体物理学 政治学
作者
Xiang Fang,Yuchong Hu,Pan Zhou,Dapeng Wu
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:1 (3): 233-247 被引量:35
标识
DOI:10.1109/tai.2021.3052425
摘要

Real data often appear in the form of multiple incomplete views. Incomplete multiview clustering is an effective method to integrate these incomplete views. Previous methods only learn the consistent information between different views and ignore the unique information of each view, which limits their clustering performance and generalizations. To overcome this limitation, we propose a novel View Variation and View Heredity approach (V[Formula: see text]H). Inspired by the variation and the heredity in genetics, V[Formula: see text]H first decomposes each subspace into a variation matrix for the corresponding view and a heredity matrix for all the views to represent the unique information and the consistent information respectively. Then, by aligning different views based on their cluster indicator matrices, V[Formula: see text]H integrates the unique information from different views to improve the clustering performance. Finally, with the help of the adjustable low-rank representation based on the heredity matrix, V[Formula: see text]H recovers the underlying true data structure to reduce the influence of the large incompleteness. More importantly, V[Formula: see text]H presents possibly the first work to introduce genetics to clustering algorithms for learning simultaneously the consistent information and the unique information from incomplete multiview data. Extensive experimental results on fifteen benchmark datasets validate its superiority over other state-of-the-arts. Impact Statement-Incomplete multiview clustering is a popular technology to cluster incomplete datasets from multiple sources. The technology is becoming more significant due to the absence of the expensive requirement of labeling these datasets. However, previous algorithms cannot fully learn the information of each view. Inspired by variation and heredity in genetics, our proposed algorithm V[Formula: see text]H fully learns the information of each view. Compared with the state-of-the-art algorithms, V[Formula: see text]H improves clustering performance by more than 20% in representative cases. With the large improvement on multiple datasets, V[Formula: see text]H has wide potential applications including the analysis of pandemic, financial and election datasets. The DOI of our codes is 10.24 433/CO.2 119 636.v1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
3秒前
昭昭昭昭完成签到,获得积分10
3秒前
Lucifer2012发布了新的文献求助10
3秒前
猫了个喵应助muqian采纳,获得10
3秒前
sys发布了新的文献求助10
3秒前
bewh发布了新的文献求助10
4秒前
哈哈恬发布了新的文献求助10
4秒前
4秒前
4秒前
碧蓝的雅柔完成签到,获得积分10
4秒前
bkagyin应助ssa采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
7秒前
ws完成签到,获得积分10
7秒前
7秒前
KKK发布了新的文献求助10
7秒前
8秒前
8秒前
赵科翊完成签到,获得积分10
8秒前
晨霜完成签到,获得积分10
10秒前
10秒前
10秒前
zws发布了新的文献求助10
10秒前
QT发布了新的文献求助10
10秒前
小蜜罐完成签到,获得积分10
10秒前
sys完成签到,获得积分10
10秒前
乐乐应助结实红酒采纳,获得10
11秒前
11秒前
沈迎松发布了新的文献求助10
12秒前
归雁发布了新的文献求助10
12秒前
烟花应助fff采纳,获得80
12秒前
wjl发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515890
求助须知:如何正确求助?哪些是违规求助? 3098083
关于积分的说明 9237912
捐赠科研通 2793061
什么是DOI,文献DOI怎么找? 1532791
邀请新用户注册赠送积分活动 712304
科研通“疑难数据库(出版商)”最低求助积分说明 707256