Development and evaluation of a deep learning model for the detection of multiple fundus diseases based on colour fundus photography

医学 眼科 眼底(子宫) 眼底摄影 黄斑变性 糖尿病性视网膜病变 接收机工作特性 色素性视网膜炎 视网膜静脉 视神经 视网膜 荧光血管造影 糖尿病 内科学 内分泌学
作者
Bing Li,Huan Chen,Bilei Zhang,Mingzhen Yuan,Xuemin Jin,Bo Lei,Jie Xu,Wei Gu,David Wong,Xixi He,Li Wang,Dayong Ding,Xirong Li,Youxin Chen,Weihong Yu
出处
期刊:British Journal of Ophthalmology [BMJ]
卷期号:: bjophthalmol-316290 被引量:41
标识
DOI:10.1136/bjophthalmol-2020-316290
摘要

Aim To explore and evaluate an appropriate deep learning system (DLS) for the detection of 12 major fundus diseases using colour fundus photography. Methods Diagnostic performance of a DLS was tested on the detection of normal fundus and 12 major fundus diseases including referable diabetic retinopathy, pathologic myopic retinal degeneration, retinal vein occlusion, retinitis pigmentosa, retinal detachment, wet and dry age-related macular degeneration, epiretinal membrane, macula hole, possible glaucomatous optic neuropathy, papilledema and optic nerve atrophy. The DLS was developed with 56 738 images and tested with 8176 images from one internal test set and two external test sets. The comparison with human doctors was also conducted. Results The area under the receiver operating characteristic curves of the DLS on the internal test set and the two external test sets were 0.950 (95% CI 0.942 to 0.957) to 0.996 (95% CI 0.994 to 0.998), 0.931 (95% CI 0.923 to 0.939) to 1.000 (95% CI 0.999 to 1.000) and 0.934 (95% CI 0.929 to 0.938) to 1.000 (95% CI 0.999 to 1.000), with sensitivities of 80.4% (95% CI 79.1% to 81.6%) to 97.3% (95% CI 96.7% to 97.8%), 64.6% (95% CI 63.0% to 66.1%) to 100% (95% CI 100% to 100%) and 68.0% (95% CI 67.1% to 68.9%) to 100% (95% CI 100% to 100%), respectively, and specificities of 89.7% (95% CI 88.8% to 90.7%) to 98.1% (95%CI 97.7% to 98.6%), 78.7% (95% CI 77.4% to 80.0%) to 99.6% (95% CI 99.4% to 99.8%) and 88.1% (95% CI 87.4% to 88.7%) to 98.7% (95% CI 98.5% to 99.0%), respectively. When compared with human doctors, the DLS obtained a higher diagnostic sensitivity but lower specificity. Conclusion The proposed DLS is effective in diagnosing normal fundus and 12 major fundus diseases, and thus has much potential for fundus diseases screening in the real world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
kdh510完成签到,获得积分10
1秒前
1秒前
英姑应助自由的鸡翅采纳,获得10
1秒前
所所应助木棉采纳,获得10
1秒前
汉堡包应助00000采纳,获得10
1秒前
2秒前
lijall发布了新的文献求助20
2秒前
2秒前
2秒前
TiY发布了新的文献求助10
2秒前
HAM完成签到,获得积分10
3秒前
小黄完成签到,获得积分10
3秒前
烟花应助小女子常戚戚采纳,获得10
4秒前
李爱国应助ZYH采纳,获得10
4秒前
xfeng完成签到,获得积分10
4秒前
5秒前
清图发布了新的文献求助10
5秒前
橘白关注了科研通微信公众号
6秒前
奶茶发布了新的文献求助10
6秒前
leaves发布了新的文献求助10
6秒前
饭桶的魅影完成签到,获得积分10
9秒前
9秒前
陈正军完成签到,获得积分20
9秒前
maox1aoxin应助虚心契采纳,获得30
9秒前
simin完成签到,获得积分10
10秒前
10秒前
顾矜应助laciry采纳,获得10
10秒前
海上森林的一只猫完成签到 ,获得积分10
11秒前
今后应助only13lili采纳,获得30
11秒前
Hello应助小女子常戚戚采纳,获得10
14秒前
赘婿应助Zhuzhu采纳,获得10
16秒前
zhing完成签到,获得积分10
16秒前
yuefeng发布了新的文献求助10
18秒前
18秒前
zhouchen发布了新的文献求助10
22秒前
23秒前
菠萝吹雪应助lerrygg采纳,获得40
23秒前
稳重的山柏完成签到 ,获得积分20
23秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222964
求助须知:如何正确求助?哪些是违规求助? 2871692
关于积分的说明 8176873
捐赠科研通 2538636
什么是DOI,文献DOI怎么找? 1370695
科研通“疑难数据库(出版商)”最低求助积分说明 645857
邀请新用户注册赠送积分活动 619776