Development and evaluation of a deep learning model for the detection of multiple fundus diseases based on colour fundus photography

医学 眼科 眼底(子宫) 眼底摄影 黄斑变性 糖尿病性视网膜病变 接收机工作特性 色素性视网膜炎 视网膜静脉 视神经 视网膜 荧光血管造影 糖尿病 内科学 内分泌学
作者
Bing Li,Huan Chen,Bilei Zhang,Mingzhen Yuan,Xuemin Jin,Bo Lei,Jie Xu,Wei Gu,David Wong,Xixi He,Hao Wang,Dayong Ding,Xirong Li,Youxin Chen,Weihong Yu
出处
期刊:British Journal of Ophthalmology [BMJ]
卷期号:: bjophthalmol-316290 被引量:41
标识
DOI:10.1136/bjophthalmol-2020-316290
摘要

Aim To explore and evaluate an appropriate deep learning system (DLS) for the detection of 12 major fundus diseases using colour fundus photography. Methods Diagnostic performance of a DLS was tested on the detection of normal fundus and 12 major fundus diseases including referable diabetic retinopathy, pathologic myopic retinal degeneration, retinal vein occlusion, retinitis pigmentosa, retinal detachment, wet and dry age-related macular degeneration, epiretinal membrane, macula hole, possible glaucomatous optic neuropathy, papilledema and optic nerve atrophy. The DLS was developed with 56 738 images and tested with 8176 images from one internal test set and two external test sets. The comparison with human doctors was also conducted. Results The area under the receiver operating characteristic curves of the DLS on the internal test set and the two external test sets were 0.950 (95% CI 0.942 to 0.957) to 0.996 (95% CI 0.994 to 0.998), 0.931 (95% CI 0.923 to 0.939) to 1.000 (95% CI 0.999 to 1.000) and 0.934 (95% CI 0.929 to 0.938) to 1.000 (95% CI 0.999 to 1.000), with sensitivities of 80.4% (95% CI 79.1% to 81.6%) to 97.3% (95% CI 96.7% to 97.8%), 64.6% (95% CI 63.0% to 66.1%) to 100% (95% CI 100% to 100%) and 68.0% (95% CI 67.1% to 68.9%) to 100% (95% CI 100% to 100%), respectively, and specificities of 89.7% (95% CI 88.8% to 90.7%) to 98.1% (95%CI 97.7% to 98.6%), 78.7% (95% CI 77.4% to 80.0%) to 99.6% (95% CI 99.4% to 99.8%) and 88.1% (95% CI 87.4% to 88.7%) to 98.7% (95% CI 98.5% to 99.0%), respectively. When compared with human doctors, the DLS obtained a higher diagnostic sensitivity but lower specificity. Conclusion The proposed DLS is effective in diagnosing normal fundus and 12 major fundus diseases, and thus has much potential for fundus diseases screening in the real world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鉴湖完成签到,获得积分10
刚刚
香菇蛋完成签到,获得积分10
1秒前
LZH完成签到,获得积分10
2秒前
3秒前
开放友灵完成签到,获得积分10
3秒前
3秒前
4秒前
脆香可丽饼完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
充电宝应助hhh采纳,获得10
5秒前
Yukaze发布了新的文献求助10
6秒前
shutong发布了新的文献求助30
6秒前
JamesPei应助羊羊羊采纳,获得10
7秒前
7秒前
9秒前
9秒前
www发布了新的文献求助10
9秒前
10秒前
王羲之发布了新的文献求助10
10秒前
牛牛眉目发布了新的文献求助10
10秒前
10秒前
Hello应助十一采纳,获得10
11秒前
11秒前
我是老大应助小树采纳,获得10
11秒前
11秒前
12秒前
XCHI发布了新的文献求助10
13秒前
汉堡包应助半柚采纳,获得10
16秒前
10发布了新的文献求助10
16秒前
牛奶牛奶发布了新的文献求助10
16秒前
俗签发布了新的文献求助10
16秒前
上官若男应助Yukaze采纳,获得10
17秒前
完美世界应助2021采纳,获得10
17秒前
minrui发布了新的文献求助20
17秒前
18秒前
直率芸遥发布了新的文献求助10
20秒前
可爱的函函应助NMZN采纳,获得10
20秒前
王羲之完成签到,获得积分0
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956275
求助须知:如何正确求助?哪些是违规求助? 3502464
关于积分的说明 11107805
捐赠科研通 3233133
什么是DOI,文献DOI怎么找? 1787170
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802093