Automated vessel segmentation in lung CT and CTA images via deep neural networks

分割 卷积神经网络 Sørensen–骰子系数 计算机科学 人工智能 深度学习 人工神经网络 基本事实 模式识别(心理学) 计算机断层血管造影 图像分割 计算机断层摄影术 放射科 医学
作者
Wenjun Tan,Luqian Zhou,Xiaoshuo Li,Xiaoyu Yang,Yufei Chen,Jinzhu Yang
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:29 (6): 1123-1137 被引量:16
标识
DOI:10.3233/xst-210955
摘要

The distribution of pulmonary vessels in computed tomography (CT) and computed tomography angiography (CTA) images of lung is important for diagnosing disease, formulating surgical plans and pulmonary research.Based on the pulmonary vascular segmentation task of International Symposium on Image Computing and Digital Medicine 2020 challenge, this paper reviews 12 different pulmonary vascular segmentation algorithms of lung CT and CTA images and then objectively evaluates and compares their performances.First, we present the annotated reference dataset of lung CT and CTA images. A subset of the dataset consisting 7,307 slices for training and 3,888 slices for testing was made available for participants. Second, by analyzing the performance comparison of different convolutional neural networks from 12 different institutions for pulmonary vascular segmentation, the reasons for some defects and improvements are summarized. The models are mainly based on U-Net, Attention, GAN, and multi-scale fusion network. The performance is measured in terms of Dice coefficient, over segmentation rate and under segmentation rate. Finally, we discuss several proposed methods to improve the pulmonary vessel segmentation results using deep neural networks.By comparing with the annotated ground truth from both lung CT and CTA images, most of 12 deep neural network algorithms do an admirable job in pulmonary vascular extraction and segmentation with the dice coefficients ranging from 0.70 to 0.85. The dice coefficients for the top three algorithms are about 0.80.Study results show that integrating methods that consider spatial information, fuse multi-scale feature map, or have an excellent post-processing to deep neural network training and optimization process are significant for further improving the accuracy of pulmonary vascular segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果易真完成签到,获得积分10
刚刚
aixiudek完成签到,获得积分10
1秒前
从今伴君行完成签到,获得积分10
1秒前
1秒前
好汉完成签到,获得积分10
1秒前
zhang@完成签到,获得积分10
2秒前
zj完成签到,获得积分10
2秒前
柚子发布了新的文献求助10
3秒前
3秒前
lisa完成签到,获得积分10
3秒前
忧伤的皮皮虾完成签到,获得积分10
3秒前
yukime发布了新的文献求助10
4秒前
zyj完成签到,获得积分10
4秒前
苏灿完成签到,获得积分10
5秒前
5秒前
光亮夏兰发布了新的文献求助10
5秒前
丰知然应助科研通管家采纳,获得10
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
你说的都对完成签到,获得积分10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
丰知然应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
iWanted完成签到,获得积分10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
平常山河发布了新的文献求助10
7秒前
能干水蓝完成签到 ,获得积分10
8秒前
爱听歌半山完成签到,获得积分10
8秒前
太清完成签到,获得积分10
8秒前
infinite发布了新的文献求助10
8秒前
8秒前
9秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311526
求助须知:如何正确求助?哪些是违规求助? 2944297
关于积分的说明 8518278
捐赠科研通 2619707
什么是DOI,文献DOI怎么找? 1432509
科研通“疑难数据库(出版商)”最低求助积分说明 664684
邀请新用户注册赠送积分活动 649903