Automated vessel segmentation in lung CT and CTA images via deep neural networks

分割 卷积神经网络 Sørensen–骰子系数 计算机科学 人工智能 深度学习 人工神经网络 基本事实 模式识别(心理学) 计算机断层血管造影 图像分割 计算机断层摄影术 放射科 医学
作者
Wenjun Tan,Luqian Zhou,Xiaoshuo Li,Xiaoyu Yang,Yufei Chen,Jinzhu Yang
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:29 (6): 1123-1137 被引量:16
标识
DOI:10.3233/xst-210955
摘要

The distribution of pulmonary vessels in computed tomography (CT) and computed tomography angiography (CTA) images of lung is important for diagnosing disease, formulating surgical plans and pulmonary research.Based on the pulmonary vascular segmentation task of International Symposium on Image Computing and Digital Medicine 2020 challenge, this paper reviews 12 different pulmonary vascular segmentation algorithms of lung CT and CTA images and then objectively evaluates and compares their performances.First, we present the annotated reference dataset of lung CT and CTA images. A subset of the dataset consisting 7,307 slices for training and 3,888 slices for testing was made available for participants. Second, by analyzing the performance comparison of different convolutional neural networks from 12 different institutions for pulmonary vascular segmentation, the reasons for some defects and improvements are summarized. The models are mainly based on U-Net, Attention, GAN, and multi-scale fusion network. The performance is measured in terms of Dice coefficient, over segmentation rate and under segmentation rate. Finally, we discuss several proposed methods to improve the pulmonary vessel segmentation results using deep neural networks.By comparing with the annotated ground truth from both lung CT and CTA images, most of 12 deep neural network algorithms do an admirable job in pulmonary vascular extraction and segmentation with the dice coefficients ranging from 0.70 to 0.85. The dice coefficients for the top three algorithms are about 0.80.Study results show that integrating methods that consider spatial information, fuse multi-scale feature map, or have an excellent post-processing to deep neural network training and optimization process are significant for further improving the accuracy of pulmonary vascular segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助南瓜气气采纳,获得30
1秒前
晓晓发布了新的文献求助10
1秒前
英姑应助梨理栗采纳,获得10
2秒前
东方红发布了新的文献求助10
2秒前
ah爱科研完成签到,获得积分10
3秒前
3秒前
5秒前
若梦易燃发布了新的文献求助10
5秒前
思源应助全若之采纳,获得10
5秒前
6秒前
7秒前
积极的笑柳完成签到,获得积分10
8秒前
JUNE发布了新的文献求助10
8秒前
小鱼发布了新的文献求助10
11秒前
小仙女212发布了新的文献求助10
12秒前
12秒前
可爱得喵喵叫的中华卷柏完成签到,获得积分10
13秒前
13秒前
tianmengkui完成签到,获得积分10
15秒前
轻松的万天完成签到 ,获得积分10
16秒前
x夏天完成签到 ,获得积分10
16秒前
晓晓完成签到,获得积分10
16秒前
繁荣的代秋完成签到 ,获得积分10
17秒前
马小跳完成签到,获得积分20
17秒前
18秒前
18秒前
19秒前
Infinit完成签到,获得积分10
20秒前
20秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
y924758705发布了新的文献求助10
24秒前
25秒前
28秒前
瘦瘦天奇发布了新的文献求助10
28秒前
莉丽发布了新的文献求助10
30秒前
33秒前
柳行天完成签到 ,获得积分10
33秒前
科目三应助阳光易真采纳,获得30
38秒前
yoyo发布了新的文献求助10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989069
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253589
捐赠科研通 3269939
什么是DOI,文献DOI怎么找? 1804851
邀请新用户注册赠送积分活动 882074
科研通“疑难数据库(出版商)”最低求助积分说明 809073