A Deep-Learned Embedding Technique for Categorical Features Encoding

范畴变量 计算机科学 人工智能 编码(内存) 文字嵌入 词(群论) 词汇分析 深度学习 特征向量 嵌入 特征(语言学) 模式识别(心理学) 机器学习 自然语言处理 数学 语言学 哲学 几何学
作者
Mwamba Kasongo Dahouda,Inwhee Joe
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 114381-114391 被引量:57
标识
DOI:10.1109/access.2021.3104357
摘要

Many machine learning algorithms and almost all deep learning architectures are incapable of processing plain texts in their raw form.This means that their input to the algorithms must be numerical in order to solve classification or regression problems.Hence, it is necessary to encode these categorical variables into numerical values using encoding techniques.Categorical features are common and often of high cardinality.One-hot encoding in such circumstances leads to very high dimensional vector representations, raising memory and computability concerns for machine learning models.This paper proposes a deep-learned embedding technique for categorical features encoding on categorical datasets.Our technique is a distributed representation for categorical features where each category is mapped to a distinct vector, and the properties of the vector are learned while training a neural network.First, we create a data vocabulary that includes only categorical data, and then we use word tokenization to make each categorical data a single word.After that, feature learning is introduced to map all of the categorical data from the vocabulary to word vectors.Three different datasets provided by the University of California Irvine (UCI) are used for training.The experimental results show that the proposed deeplearned embedding technique for categorical data provides a higher F1 score of 89% than 71% of onehot encoding, in the case of the Long short-term memory (LSTM) model.Moreover, the deep-learned embedding technique uses less memory and generates fewer features than one-hot encoding.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
ddddddd完成签到 ,获得积分10
7秒前
yidashi发布了新的文献求助10
7秒前
曾无忧完成签到,获得积分10
7秒前
10秒前
传奇3应助过噻采纳,获得10
10秒前
14秒前
林木森森完成签到,获得积分20
15秒前
Bear完成签到 ,获得积分10
16秒前
电磁很快学会应助陈星锦采纳,获得10
17秒前
17秒前
qpp完成签到,获得积分10
19秒前
23秒前
stretchability完成签到,获得积分10
23秒前
青桔柠檬完成签到 ,获得积分10
23秒前
大个应助林..采纳,获得10
25秒前
科研通AI2S应助Sherme采纳,获得10
30秒前
32秒前
笨笨的从阳SJW完成签到,获得积分10
32秒前
xiaohaonumber2完成签到 ,获得积分10
35秒前
MaHongyang完成签到,获得积分10
37秒前
薄荷完成签到,获得积分10
40秒前
41秒前
41秒前
42秒前
43秒前
Aries完成签到 ,获得积分10
44秒前
科研通AI2S应助Minerva采纳,获得10
46秒前
fly完成签到 ,获得积分10
46秒前
47秒前
过噻发布了新的文献求助10
47秒前
47秒前
49秒前
yk发布了新的文献求助10
49秒前
多金完成签到,获得积分10
52秒前
Mrmiss666发布了新的文献求助10
52秒前
54秒前
54秒前
韦涔完成签到,获得积分10
58秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137561
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787276
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300093
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023