A Simulation-Based Heuristic to Find Approximate Equilibria with Disaggregate Demand Models

数学优化 离散选择 启发式 子对策完全均衡 数理经济学 寡头垄断 纳什均衡 计算机科学 数学 经济 古诺竞争 计量经济学
作者
Stefano Bortolomiol,Virginie Lurkin,Michel Bierlaire
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:55 (5): 1025-1045 被引量:4
标识
DOI:10.1287/trsc.2021.1071
摘要

Oligopolistic competition occurs in various transportation markets. In this paper, we introduce a framework to find approximate equilibrium solutions of oligopolistic markets in which demand is modeled at the disaggregate level using discrete choice models, according to random utility theory. Compared with aggregate demand models, the added value of discrete choice models is the possibility to account for more complex and precise representations of individual behaviors. Because of the form of the resulting demand functions, there is no guarantee that an equilibrium solution for the given market exists, nor is it possible to rely on derivative-based methods to find one. Therefore, we propose a model-based algorithmic approach to find approximate equilibria, which is structured as follows. A heuristic reduction of the search space is initially performed. Then, a subgame equilibrium problem is solved using a mixed integer optimization model inspired by the fixed-point iteration algorithm. The optimal solution of the subgame is compared against the best responses of all suppliers over the strategy sets of the original game. Best response strategies are added to the restricted problem until all ε-equilibrium conditions are satisfied simultaneously. Numerical experiments show that our methodology can approximate the results of an exact method that finds a pure equilibrium in the case of a multinomial logit model of demand with a single-product offer and homogeneous demand. Furthermore, it succeeds at finding approximate equilibria for two transportation case studies featuring more complex discrete choice models, heterogeneous demand, a multiproduct offer by suppliers, and price differentiation for which no analytical approach exists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiuikiu发布了新的文献求助10
刚刚
vincentbioinfo完成签到,获得积分10
1秒前
1秒前
小蘑菇应助文艺的冬卉采纳,获得10
1秒前
过CCC完成签到,获得积分10
3秒前
3秒前
4秒前
幸福美满完成签到,获得积分20
5秒前
搜集达人应助默默的难破采纳,获得10
5秒前
贼拉瘦的美神完成签到,获得积分10
6秒前
丘比特应助秦雄采纳,获得10
6秒前
zhonglv7应助读书的时候采纳,获得10
7秒前
科研通AI6.1应助王京华采纳,获得30
8秒前
多多完成签到,获得积分10
8秒前
鳗鱼衣完成签到 ,获得积分10
8秒前
dgzsbldtm完成签到,获得积分10
8秒前
melokig发布了新的文献求助10
9秒前
狂野吐司完成签到 ,获得积分10
9秒前
扁舟子完成签到,获得积分10
10秒前
田様应助忐忑的远山采纳,获得10
10秒前
霸气的灯泡完成签到 ,获得积分10
12秒前
gfjh完成签到,获得积分10
12秒前
12秒前
trigger完成签到,获得积分10
12秒前
13秒前
星辰大海应助黑神白了采纳,获得10
13秒前
科研菜菜完成签到,获得积分20
15秒前
曲聋五完成签到 ,获得积分0
15秒前
15秒前
16秒前
16秒前
16秒前
小金完成签到,获得积分10
16秒前
霸气的灯泡关注了科研通微信公众号
17秒前
量子星尘发布了新的文献求助10
18秒前
852应助为神武采纳,获得10
18秒前
去日留痕发布了新的文献求助10
19秒前
Qi36发布了新的文献求助10
20秒前
20秒前
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749974
求助须知:如何正确求助?哪些是违规求助? 5461658
关于积分的说明 15365193
捐赠科研通 4889239
什么是DOI,文献DOI怎么找? 2629002
邀请新用户注册赠送积分活动 1577297
关于科研通互助平台的介绍 1533917