A Simulation-Based Heuristic to Find Approximate Equilibria with Disaggregate Demand Models

数学优化 离散选择 启发式 子对策完全均衡 数理经济学 寡头垄断 纳什均衡 计算机科学 数学 经济 古诺竞争 计量经济学
作者
Stefano Bortolomiol,Virginie Lurkin,Michel Bierlaire
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:55 (5): 1025-1045 被引量:4
标识
DOI:10.1287/trsc.2021.1071
摘要

Oligopolistic competition occurs in various transportation markets. In this paper, we introduce a framework to find approximate equilibrium solutions of oligopolistic markets in which demand is modeled at the disaggregate level using discrete choice models, according to random utility theory. Compared with aggregate demand models, the added value of discrete choice models is the possibility to account for more complex and precise representations of individual behaviors. Because of the form of the resulting demand functions, there is no guarantee that an equilibrium solution for the given market exists, nor is it possible to rely on derivative-based methods to find one. Therefore, we propose a model-based algorithmic approach to find approximate equilibria, which is structured as follows. A heuristic reduction of the search space is initially performed. Then, a subgame equilibrium problem is solved using a mixed integer optimization model inspired by the fixed-point iteration algorithm. The optimal solution of the subgame is compared against the best responses of all suppliers over the strategy sets of the original game. Best response strategies are added to the restricted problem until all ε-equilibrium conditions are satisfied simultaneously. Numerical experiments show that our methodology can approximate the results of an exact method that finds a pure equilibrium in the case of a multinomial logit model of demand with a single-product offer and homogeneous demand. Furthermore, it succeeds at finding approximate equilibria for two transportation case studies featuring more complex discrete choice models, heterogeneous demand, a multiproduct offer by suppliers, and price differentiation for which no analytical approach exists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助默默善愁采纳,获得50
1秒前
1秒前
Nano完成签到,获得积分10
2秒前
香蕉觅云应助honey采纳,获得10
2秒前
wang发布了新的文献求助10
3秒前
Lime完成签到,获得积分10
4秒前
飘逸的幻灵完成签到,获得积分10
4秒前
阿十发布了新的文献求助10
4秒前
正念完成签到,获得积分10
4秒前
SciGPT应助科研一号采纳,获得10
4秒前
6秒前
落后裙子完成签到,获得积分10
6秒前
ETJ发布了新的文献求助10
7秒前
深情安青应助好好采纳,获得10
8秒前
8秒前
Jenna完成签到,获得积分10
9秒前
呵呜哎辉完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
周小夭发布了新的文献求助10
12秒前
12秒前
酷炫的如风完成签到 ,获得积分10
12秒前
13秒前
默默善愁发布了新的文献求助50
13秒前
朴素的士晋完成签到 ,获得积分10
14秒前
思源应助笔落惊风雨采纳,获得10
14秒前
嘉深完成签到,获得积分10
14秒前
852应助滴滴答答采纳,获得10
15秒前
15秒前
MaSaR完成签到,获得积分10
16秒前
笨笨以莲发布了新的文献求助10
16秒前
honey发布了新的文献求助10
16秒前
chili发布了新的文献求助10
16秒前
Nano发布了新的文献求助10
17秒前
神勇灵竹完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233