Robust Discovery of Mild Cognitive Impairment Subtypes and Their Risk of Alzheimer's Disease Conversion Using Unsupervised Machine Learning and Gaussian Mixture Modeling

混合模型 潜在类模型 心理学 聚类分析 阿尔茨海默病 疾病 集合(抽象数据类型) 认知障碍 优势比 认知 人工智能 机器学习 精神科 医学 计算机科学 内科学 程序设计语言
作者
Fahimeh Nezhadmoghadam,Antonio Martinez-Torteya,Victor Trevino,Emmanuel Martinez,Alejandro Santos,Jose Tamez-Pena
出处
期刊:Current Alzheimer Research [Bentham Science]
卷期号:18 (7): 595-606 被引量:2
标识
DOI:10.2174/1567205018666210831145825
摘要

Alzheimer's Disease (AD) is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills. The ability to correctly predict the diagnosis of Alzheimer's disease in its earliest stages can help physicians make more informed clinical decisions on therapy plans.This study aimed to determine whether the unsupervised discovering of latent classes of subjects with Mild Cognitive Impairment (MCI) may be useful in finding different prodromal AD stages and/or subjects with a low MCI to AD conversion risk.Total 18 features relevant to the MCI to AD conversion process led to the identification of 681 subjects with early MCI. Subjects were divided into training (70%) and validation (30%) sets. Subjects from the training set were analyzed using consensus clustering, and Gaussian Mixture Models (GMM) were used to describe the latent classes. The discovered GMM predicted the latent class of the validation set. Finally, descriptive statistics, rates of conversion, and Odds Ratios (OR) were computed for each discovered class.Through consensus clustering, we discovered three different clusters among MCI subjects. The three clusters were associated with low-risk (OR = 0.12, 95%CI = 0.04 to 0.3|), medium-risk (OR = 1.33, 95%CI = 0.75 to 2.37), and high-risk (OR = 3.02, 95%CI = 1.64 to 5.57) of converting from MCI to AD, with the high-risk and low-risk groups highly contrasting. Hence, prodromal AD subjects were present in only two clusters.We successfully discovered three different latent classes among MCI subjects with varied risks of MCI-to-AD conversion through consensus clustering. Two of the discovered classes may represent two different prodromal presentations of Alzheimer´s disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮莫茗完成签到,获得积分20
刚刚
田様应助guiys2000采纳,获得10
1秒前
1秒前
3秒前
4秒前
hiccup发布了新的文献求助10
5秒前
nzlhhhh发布了新的文献求助20
5秒前
wanghui完成签到,获得积分20
5秒前
俏皮的新之完成签到,获得积分20
5秒前
Crystal发布了新的文献求助10
5秒前
6秒前
科研通AI5应助舒适的迎天采纳,获得10
7秒前
布丁完成签到,获得积分10
9秒前
9秒前
Hexlian3给Hexlian3的求助进行了留言
10秒前
从容的无极应助HR112采纳,获得10
10秒前
10秒前
11秒前
老仙翁完成签到,获得积分10
12秒前
晓彤发布了新的文献求助10
12秒前
guan发布了新的文献求助10
12秒前
13秒前
我是老大应助格格采纳,获得10
14秒前
14秒前
车宇发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
yi完成签到,获得积分10
17秒前
HW完成签到,获得积分10
18秒前
shenlin完成签到,获得积分10
18秒前
19秒前
jolin发布了新的文献求助10
19秒前
HW发布了新的文献求助10
20秒前
逃亡的小狗完成签到,获得积分10
21秒前
坐以待币完成签到 ,获得积分10
21秒前
downdown完成签到,获得积分10
23秒前
23秒前
24秒前
地球发布了新的文献求助10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524827
求助须知:如何正确求助?哪些是违规求助? 3105639
关于积分的说明 9275413
捐赠科研通 2802884
什么是DOI,文献DOI怎么找? 1538217
邀请新用户注册赠送积分活动 716120
科研通“疑难数据库(出版商)”最低求助积分说明 709230