过电位
非阻塞I/O
材料科学
塔菲尔方程
分解水
析氧
催化作用
纳米片
异质结
空位缺陷
化学工程
光催化
纳米技术
电化学
电极
物理化学
化学
光电子学
结晶学
工程类
生物化学
作者
Huizhou Zhong,Guoping Gao,Xuening Wang,Hengyi Wu,Shaohua Shen,Wenbin Zuo,Guangxu Cai,Wei Guo,Ying Shi,Dejun Fu,Changzhong Jiang,Lin‐Wang Wang,Feng Ren
出处
期刊:Small
[Wiley]
日期:2021-08-18
卷期号:17 (40)
被引量:99
标识
DOI:10.1002/smll.202103501
摘要
Abstract Oxygen evolution reaction (OER) is an obstacle to the electrocatalytic water splitting due to its unique four‐proton‐and‐electron‐transfer reaction process. Many methods, such as engineering heterostructure and introducing oxygen vacancy, have been used to improve the catalytic performance of electrocatalysts for OER. Herein, the above two kinds of regulation are simultaneously realized in a catalyst by using unique ion irradiation technology. A nanosheet structured NiO/NiFe 2 O 4 heterostructure with rich oxygen vacancies converted from nickel–iron layered double hydroxides by Ar + ions irradiation shows significant enhancement in both OER and hydrogen evolution reaction performance. Density functional theory (DFT) calculations reveal that the construction of NiO/NiFe 2 O 4 can optimize the free energy of O * to OOH * process during OER reaction. The oxygen vacancy‐rich NiO/NiFe 2 O 4 nanosheets have an overpotential of 279 mV at 10 mA cm −2 and a low Tafel slope of 42 mV dec −1 . Moreover, this NiO/NiFe 2 O 4 electrode shows an excellent long‐term stability at 100 mA cm −2 for 450 h. The synergetic effects between NiO and NiFe 2 O 4 make NiO/NiFe 2 O 4 heterostructure have high conductivity and fast charge transfer, abundant active sites, and high catalytic reactivity, contributing to its excellent performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI