Accurate prediction and further dissection of neonicotinoid elimination in the water treatment by CTS@AgBC using multihead attention-based convolutional neural network combined with the time-dependent Cox regression model

生物炭 吸附 计算机科学 卷积神经网络 新烟碱 人工智能 比例危险模型 化学 生物系统 环境科学 益达胺 统计 数学 热解 杀虫剂 有机化学 生态学 生物
作者
Chao Zhang,Xiaoyong Li,Feng Li,Gugong Li,Guoqiang Niu,Jie Chen,Guang‐Guo Ying,Mingzhi Huang
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:423: 127029-127029 被引量:23
标识
DOI:10.1016/j.jhazmat.2021.127029
摘要

Imidacloprid (IMI), as the most widely used neonicotinoid insecticide, poses a serious threat to the water ecosystem due to the inefficient elimination in the traditional water treatment. Chitosan (CTS)-stabilized biochar (BC)-supported Ag nanoparticles (CTS@AgBC) are applied to eliminate the IMI in the water treatment effectively. Batch experiments depict that the modification of BC by CTS and Ag nanoparticles remarkably improve its adsorption performance. The pseudo-second-order and Elovich models have good performance in simulating the adsorption processes of CTS@AgBC and BC. This indicates that the chemical adsorption on real surfaces plays the dominant role in the adsorption of IMI by CTS@AgBC and BC. In addition, the multihead attention (MHA)-based convolutional neural network (CNN) combined with the time-dependent Cox regression model are initially applied to predict and dissect the adsorption elimination processes of IMI by CTS@AgBC. The proposed MHA-CNN model achieves more accurate concentration prediction of IMI than traditional models. According to influence weights by MHA module, biochar category, pH, and treatment temperature are considered the three dominant environmental variables to determine the IMI elimination processes. This study provides insights into roles of environmental variables in the elimination of IMI by CTS@AgBC and the accurate prediction of IMI concentration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助雷半双采纳,获得10
刚刚
1秒前
1秒前
脑洞疼应助魔幻的白羊采纳,获得10
4秒前
希望天下0贩的0应助jovrtic采纳,获得30
5秒前
5秒前
李健应助沉静的煎蛋采纳,获得10
7秒前
玩儿发布了新的文献求助10
9秒前
李健的小迷弟应助贾克斯采纳,获得10
10秒前
我是老大应助yuaaaann采纳,获得10
10秒前
小城楠完成签到,获得积分20
12秒前
12秒前
怕黑的枫完成签到 ,获得积分10
14秒前
NexusExplorer应助zjzjzjzjzj采纳,获得10
14秒前
汉堡包应助lalala采纳,获得10
16秒前
wei完成签到,获得积分10
16秒前
17秒前
DHW1703701完成签到,获得积分10
17秒前
jovrtic发布了新的文献求助30
17秒前
勤劳影子发布了新的文献求助10
18秒前
小星完成签到,获得积分20
18秒前
18秒前
aa关注了科研通微信公众号
20秒前
慕青应助冉亦采纳,获得20
21秒前
22秒前
自闭鹏发布了新的文献求助10
24秒前
24秒前
24秒前
顾矜应助莫大采纳,获得10
25秒前
共享精神应助kytyzx采纳,获得10
25秒前
26秒前
liuzr应助mercury采纳,获得10
26秒前
赘婿应助Jerry采纳,获得10
27秒前
27秒前
29秒前
大模型应助小星采纳,获得10
29秒前
30秒前
30秒前
31秒前
31秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207144
求助须知:如何正确求助?哪些是违规求助? 2856497
关于积分的说明 8105208
捐赠科研通 2521662
什么是DOI,文献DOI怎么找? 1354994
科研通“疑难数据库(出版商)”最低求助积分说明 642133
邀请新用户注册赠送积分活动 613356