清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Adaptive global kernel interval SVR-based machine learning for accelerated dielectric constant prediction of polymer-based dielectric energy storage

电介质 核(代数) 计算机科学 区间(图论) 储能 聚合物 常量(计算机编程) 人工智能 能量(信号处理) 数学 复合材料 材料科学 热力学 物理 统计 离散数学 功率(物理) 程序设计语言 光电子学 组合数学
作者
Yong Yi,Liming Wang,Zhengying Chen
出处
期刊:Renewable Energy [Elsevier]
卷期号:176: 81-88 被引量:22
标识
DOI:10.1016/j.renene.2021.05.045
摘要

Exploring the data-driven prediction strategy of dielectric constant (ε) is attractive for the rational design of polymer dielectrics with targeted property, especially for the design of high ε and low loss dielectric energy storage. To accelerate the design and discovery of novel polymer-based dielectric energy storage, the machine learning-based predictor, interval support vector regression with optimized genetic algorithm (OGA-ISVR), is proposed to predict ε values, which could improve prediction accuracy and reduce time consumption via splitting the overall data space into subspaces, then adaptively choosing the kernel function and obtaining optimal hyper-parameters by genetic algorithm in each subspace. Here, the developed model is sufficiently trained and tested from the experimentally measured data and density functional theory-based computational data at various frequencies (spanning from 60 Hz to 1015 Hz). The mapping relationships between features and property and influencing factor of ε values are identified by this machine learning-based model. Furthermore, compared with common support vector regression method, the proposed model has lower computing overhead and higher prediction accuracy. The proposed model is successfully demonstrated here for the instant property predictions of polymer dielectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
21秒前
陳.发布了新的文献求助10
28秒前
31秒前
bji完成签到,获得积分10
39秒前
兰球的仙人掌完成签到 ,获得积分10
49秒前
56秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
BowieHuang应助科研通管家采纳,获得10
57秒前
af完成签到,获得积分10
1分钟前
1分钟前
勤劳的渊思完成签到 ,获得积分10
1分钟前
两个榴莲完成签到,获得积分0
1分钟前
大胆易巧完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
hu发布了新的文献求助10
2分钟前
3分钟前
香蕉觅云应助杨泽宇采纳,获得10
3分钟前
简单的莫言完成签到,获得积分10
4分钟前
文承杰完成签到 ,获得积分10
4分钟前
沿途有你完成签到 ,获得积分10
4分钟前
jarrykim完成签到,获得积分10
4分钟前
5分钟前
ajing发布了新的文献求助10
5分钟前
5分钟前
5分钟前
温暖的芷烟完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
笑点低的斑马完成签到,获得积分10
5分钟前
tt完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
块块发布了新的文献求助10
6分钟前
鸿俦鹤侣完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
李健的小迷弟应助威菡采纳,获得10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664524
求助须知:如何正确求助?哪些是违规求助? 4864111
关于积分的说明 15107906
捐赠科研通 4823161
什么是DOI,文献DOI怎么找? 2582004
邀请新用户注册赠送积分活动 1536099
关于科研通互助平台的介绍 1494513