Adaptive global kernel interval SVR-based machine learning for accelerated dielectric constant prediction of polymer-based dielectric energy storage

电介质 核(代数) 计算机科学 区间(图论) 储能 聚合物 常量(计算机编程) 人工智能 能量(信号处理) 数学 复合材料 材料科学 热力学 物理 统计 离散数学 组合数学 功率(物理) 程序设计语言 光电子学
作者
Yong Yi,Liming Wang,Zhengying Chen
出处
期刊:Renewable Energy [Elsevier]
卷期号:176: 81-88 被引量:22
标识
DOI:10.1016/j.renene.2021.05.045
摘要

Exploring the data-driven prediction strategy of dielectric constant (ε) is attractive for the rational design of polymer dielectrics with targeted property, especially for the design of high ε and low loss dielectric energy storage. To accelerate the design and discovery of novel polymer-based dielectric energy storage, the machine learning-based predictor, interval support vector regression with optimized genetic algorithm (OGA-ISVR), is proposed to predict ε values, which could improve prediction accuracy and reduce time consumption via splitting the overall data space into subspaces, then adaptively choosing the kernel function and obtaining optimal hyper-parameters by genetic algorithm in each subspace. Here, the developed model is sufficiently trained and tested from the experimentally measured data and density functional theory-based computational data at various frequencies (spanning from 60 Hz to 1015 Hz). The mapping relationships between features and property and influencing factor of ε values are identified by this machine learning-based model. Furthermore, compared with common support vector regression method, the proposed model has lower computing overhead and higher prediction accuracy. The proposed model is successfully demonstrated here for the instant property predictions of polymer dielectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinxin发布了新的文献求助10
刚刚
刚刚
科研通AI6应助尘间雪采纳,获得10
刚刚
桐桐应助snowy_owl采纳,获得30
1秒前
1秒前
2秒前
2秒前
weifeng完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
djdsg发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
研友_LNMmW8发布了新的文献求助10
6秒前
7秒前
cym完成签到,获得积分10
7秒前
8秒前
8秒前
penguin发布了新的文献求助10
8秒前
阿碧发布了新的文献求助10
9秒前
weifeng发布了新的文献求助10
10秒前
终梦应助xinxin采纳,获得10
10秒前
derrrrrsin发布了新的文献求助10
10秒前
10秒前
10秒前
chem_jwy发布了新的文献求助10
11秒前
皮凡发布了新的文献求助10
11秒前
Souveb完成签到,获得积分10
12秒前
13秒前
栗悟饭发布了新的文献求助10
14秒前
随机发布了新的文献求助10
15秒前
16秒前
ding应助笑点低飞扬采纳,获得10
17秒前
17秒前
情怀应助刘文辉采纳,获得10
17秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
仲乔妹完成签到,获得积分10
19秒前
JamesPei应助光亮的安双采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521661
求助须知:如何正确求助?哪些是违规求助? 4612952
关于积分的说明 14536550
捐赠科研通 4550467
什么是DOI,文献DOI怎么找? 2493708
邀请新用户注册赠送积分活动 1474837
关于科研通互助平台的介绍 1446243