Evaluating disease similarity based on gene network reconstruction and representation

计算机科学 计算生物学 数据挖掘 相似性(几何) 基因 代表(政治) 生物网络
作者
Yang Li,Keqi Wang,Guohua Wang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:37 (20): 3579-3587
标识
DOI:10.1093/bioinformatics/btab252
摘要

Motivation Quantifying the associations between diseases is of great significance in increasing our understanding of disease biology, improving disease diagnosis, re-positioning, and developing drugs. Therefore, in recent years, the research of disease similarity has received a lot of attention in the field of bioinformatics. Previous work has shown that the combination of the ontology (such as disease ontology and gene ontology) and disease-gene interactions are worthy to be regarded to elucidate diseases and disease associations. However, most of them are either based on the overlap between disease-related gene sets or distance within the ontology's hierarchy. The diseases in these methods are represented by discrete or sparse feature vectors, which cannot grasp the deep semantic information of diseases. Recently, deep representation learning has been widely studied and gradually applied to various fields of bioinformatics. Based on the hypothesis that disease representation depends on its related gene representations, we propose a disease representation model using two most representative gene resources HumanNet and Gene Ontology to construct a new gene network and learn gene (disease) representations. The similarity between two diseases is computed by the cosine similarity of their corresponding representations. Results We propose a novel approach to compute disease similarity, which integrates two important factors disease-related genes and gene ontology hierarchy to learn disease representation based on deep representation learning. Under the same experimental settings, the AUC value of our method is 0.8074, which improves the most competitive baseline method by 10.1%. The quantitative and qualitative experimental results show that our model can learn effective disease representations and improve the accuracy of disease similarity computation significantly. Availability The research shows that this method has certain applicability in the prediction of gene-related diseases, the migration of disease treatment methods, drug development, and so on. Supplementary information Supplementary data are available at https://github.com/catly/disease_similarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kanong完成签到,获得积分0
3秒前
上官若男应助干净的千山采纳,获得10
4秒前
啦啦完成签到 ,获得积分10
5秒前
chenying完成签到 ,获得积分10
8秒前
凯撒的归凯撒完成签到 ,获得积分10
8秒前
z1y1p1完成签到,获得积分10
8秒前
你的笑慌乱了我的骄傲完成签到 ,获得积分10
18秒前
科研通AI2S应助bill采纳,获得10
24秒前
糖宝完成签到 ,获得积分10
33秒前
科研狗完成签到 ,获得积分10
35秒前
xue112完成签到 ,获得积分10
48秒前
月亮完成签到 ,获得积分10
49秒前
bill完成签到,获得积分10
52秒前
兜兜揣满糖完成签到 ,获得积分10
53秒前
祁九完成签到 ,获得积分20
55秒前
楚襄谷完成签到 ,获得积分10
1分钟前
热心雪一完成签到 ,获得积分10
1分钟前
琉璃岁月发布了新的文献求助10
1分钟前
wishe完成签到,获得积分10
1分钟前
乐正怡完成签到 ,获得积分0
1分钟前
Song完成签到 ,获得积分10
1分钟前
天真的莺完成签到,获得积分10
1分钟前
超帅柚子完成签到 ,获得积分10
1分钟前
哈拉斯完成签到,获得积分10
1分钟前
墨墨完成签到 ,获得积分10
1分钟前
BINBIN完成签到 ,获得积分10
1分钟前
假装学霸完成签到 ,获得积分10
1分钟前
清风明月完成签到,获得积分10
1分钟前
哈哈完成签到 ,获得积分10
1分钟前
cuicy完成签到 ,获得积分10
1分钟前
l老王完成签到 ,获得积分10
1分钟前
1分钟前
kingfly2010完成签到,获得积分10
1分钟前
PhD_Lee73完成签到 ,获得积分10
1分钟前
1分钟前
哭泣的缘郡完成签到 ,获得积分10
1分钟前
谦让的西装完成签到 ,获得积分10
1分钟前
2024kyt完成签到 ,获得积分10
1分钟前
1分钟前
凯文完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311298
求助须知:如何正确求助?哪些是违规求助? 2944006
关于积分的说明 8516847
捐赠科研通 2619360
什么是DOI,文献DOI怎么找? 1432303
科研通“疑难数据库(出版商)”最低求助积分说明 664597
邀请新用户注册赠送积分活动 649856