Evaluating disease similarity based on gene network reconstruction and representation

计算机科学 计算生物学 数据挖掘 相似性(几何) 基因 代表(政治) 生物网络
作者
Yang Li,Keqi Wang,Guohua Wang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:37 (20): 3579-3587
标识
DOI:10.1093/bioinformatics/btab252
摘要

Motivation Quantifying the associations between diseases is of great significance in increasing our understanding of disease biology, improving disease diagnosis, re-positioning, and developing drugs. Therefore, in recent years, the research of disease similarity has received a lot of attention in the field of bioinformatics. Previous work has shown that the combination of the ontology (such as disease ontology and gene ontology) and disease-gene interactions are worthy to be regarded to elucidate diseases and disease associations. However, most of them are either based on the overlap between disease-related gene sets or distance within the ontology's hierarchy. The diseases in these methods are represented by discrete or sparse feature vectors, which cannot grasp the deep semantic information of diseases. Recently, deep representation learning has been widely studied and gradually applied to various fields of bioinformatics. Based on the hypothesis that disease representation depends on its related gene representations, we propose a disease representation model using two most representative gene resources HumanNet and Gene Ontology to construct a new gene network and learn gene (disease) representations. The similarity between two diseases is computed by the cosine similarity of their corresponding representations. Results We propose a novel approach to compute disease similarity, which integrates two important factors disease-related genes and gene ontology hierarchy to learn disease representation based on deep representation learning. Under the same experimental settings, the AUC value of our method is 0.8074, which improves the most competitive baseline method by 10.1%. The quantitative and qualitative experimental results show that our model can learn effective disease representations and improve the accuracy of disease similarity computation significantly. Availability The research shows that this method has certain applicability in the prediction of gene-related diseases, the migration of disease treatment methods, drug development, and so on. Supplementary information Supplementary data are available at https://github.com/catly/disease_similarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
xuxu完成签到 ,获得积分10
2秒前
3秒前
毛毛虫发布了新的文献求助10
3秒前
科研通AI5应助朴斓采纳,获得10
4秒前
陈彦冰完成签到,获得积分10
4秒前
tianny完成签到,获得积分10
5秒前
浪迹天涯发布了新的文献求助10
6秒前
星星发布了新的文献求助10
6秒前
李瑞瑞完成签到,获得积分10
7秒前
7秒前
9秒前
星辰大海应助jy采纳,获得10
9秒前
10秒前
我是站长才怪应助Khr1stINK采纳,获得10
10秒前
11秒前
xh完成签到,获得积分10
12秒前
para_团结完成签到,获得积分10
13秒前
怡然剑成发布了新的文献求助10
13秒前
14秒前
14秒前
ipeakkka发布了新的文献求助10
14秒前
George完成签到,获得积分10
16秒前
WDK完成签到,获得积分10
16秒前
情怀应助敏感的芷采纳,获得10
16秒前
Orange应助方勇飞采纳,获得10
17秒前
FashionBoy应助烂漫驳采纳,获得10
17秒前
18秒前
19秒前
大鱼完成签到,获得积分10
19秒前
19秒前
lu完成签到,获得积分10
20秒前
Murphy完成签到 ,获得积分10
20秒前
斯文败类应助大方嵩采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
充电宝应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
丘比特应助科研通管家采纳,获得30
21秒前
hh应助科研通管家采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824