Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism

化学 微型多孔材料 选择性 分子间力 乙烯 氢键 化学工程 多孔性 分子 催化作用 有机化学 工程类
作者
Yisi Yang,Libo Li,Rui‐Biao Lin,Yingxiang Ye,Zizhu Yao,Jing Wang,Fahui Xiang,Shimin Chen,Zhangjing Zhang,Shengchang Xiang,Banglin Chen
出处
期刊:Nature Chemistry [Springer Nature]
卷期号:13 (10): 933-939 被引量:330
标识
DOI:10.1038/s41557-021-00740-z
摘要

Porous materials are very promising for the development of cost- and energy-efficient separation processes, such as for the purification of ethylene from ethylene/ethane mixture—an important but currently challenging industrial process. Here we report a microporous hydrogen-bonded organic framework that takes up ethylene with very good selectivity over ethane through a gating mechanism. The material consists of tetracyano-bicarbazole building blocks held together through intermolecular CN···H–C hydrogen bonding interactions, and forms as a threefold-interpenetrated framework with pores of suitable size for the selective capture of ethylene. The hydrogen-bonded organic framework exhibits a gating mechanism in which the threshold pressure required for guest uptake varies with the temperature. Ethylene/ethane separation is validated by breakthrough experiments with high purity of ethylene (99.1%) at 333 K. Hydrogen-bonded organic frameworks are usually not robust, yet this material was stable under harsh conditions, including exposure to strong acidity, basicity and a variety of highly polar solvents. Porous materials are promising candidates for the cost- and energy-efficient separation of ethylene and ethane from gas mixtures: an important but challenging industrial process. Now, a hydrogen-bonded organic framework has been reported that is stable under harsh conditions and can take up ethylene at practical temperatures—with very high selectivity over ethane—through a gating mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助kk采纳,获得10
刚刚
qing发布了新的文献求助10
刚刚
所所应助韦威风采纳,获得10
1秒前
1秒前
大七发布了新的文献求助10
1秒前
勤奋白昼完成签到,获得积分10
1秒前
通~发布了新的文献求助10
2秒前
眼角流星完成签到,获得积分10
2秒前
bxj发布了新的文献求助10
2秒前
joker完成签到 ,获得积分10
3秒前
靓丽访枫发布了新的文献求助10
3秒前
乔乔发布了新的文献求助10
3秒前
科研通AI5应助深情凡灵采纳,获得10
5秒前
remedy完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
eric曾发布了新的文献求助10
7秒前
7秒前
嘻嘻嘻完成签到,获得积分10
8秒前
8秒前
carrier_hc完成签到,获得积分10
8秒前
冰安发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
11秒前
在水一方应助桑桑采纳,获得10
12秒前
12秒前
充电宝应助通~采纳,获得10
13秒前
liberation完成签到 ,获得积分10
13秒前
牛牛123完成签到 ,获得积分10
13秒前
14秒前
14秒前
罗实发布了新的文献求助10
15秒前
15秒前
大模型应助LL采纳,获得10
15秒前
33333发布了新的文献求助10
15秒前
自觉秋发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762