Late-stage C–H functionalization offers new opportunities in drug discovery

药物发现 工具箱 计算机科学 多元化(营销策略) 表面改性 纳米技术 生化工程 工程类 生物信息学 业务 材料科学 生物 化学工程 营销 程序设计语言
作者
Lucas Guillemard,Nikolaos Kaplaneris,Lutz Ackermann,Magnus J. Johansson
出处
期刊:Nature Reviews Chemistry [Nature Portfolio]
卷期号:5 (8): 522-545 被引量:565
标识
DOI:10.1038/s41570-021-00300-6
摘要

Over the past decade, the landscape of molecular synthesis has gained major impetus by the introduction of late-stage functionalization (LSF) methodologies. C–H functionalization approaches, particularly, set the stage for new retrosynthetic disconnections, while leading to improvements in resource economy. A variety of innovative techniques have been successfully applied to the C–H diversification of pharmaceuticals, and these key developments have enabled medicinal chemists to integrate LSF strategies in their drug discovery programmes. This Review highlights the significant advances achieved in the late-stage C–H functionalization of drugs and drug-like compounds, and showcases how the implementation of these modern strategies allows increased efficiency in the drug discovery process. Representative examples are examined and classified by mechanistic patterns involving directed or innate C–H functionalization, as well as emerging reaction manifolds, such as electrosynthesis and biocatalysis, among others. Structurally complex bioactive entities beyond small molecules are also covered, including diversification in the new modalities sphere. The challenges and limitations of current LSF methods are critically assessed, and avenues for future improvements of this rapidly expanding field are discussed. We, hereby, aim to provide a toolbox for chemists in academia as well as industrial practitioners, and introduce guiding principles for the application of LSF strategies to access new molecules of interest. Late-stage C–H functionalization of complex molecules has emerged as a powerful tool in drug discovery. This Review classifies significant examples by reaction manifold and assesses the benefits and challenges of each approach. Avenues for future improvements of this fast-expanding field are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
笑点低的牛二完成签到,获得积分10
2秒前
yoyo完成签到,获得积分10
3秒前
luxiaoyu发布了新的文献求助10
4秒前
5秒前
王德霞完成签到,获得积分10
5秒前
科研通AI5应助echo采纳,获得10
6秒前
sansan发布了新的文献求助10
8秒前
科研通AI2S应助忐忑的安筠采纳,获得10
9秒前
11秒前
12秒前
爆米花应助可爱小哪吒采纳,获得10
12秒前
luxiaoyu完成签到,获得积分10
13秒前
sansan完成签到 ,获得积分10
13秒前
谨慎乌完成签到,获得积分10
15秒前
周同学发布了新的文献求助10
16秒前
研友_VZG7GZ应助Waris采纳,获得10
16秒前
17秒前
wobisheng发布了新的文献求助10
17秒前
kyt发布了新的文献求助10
17秒前
赫连人杰发布了新的文献求助10
19秒前
姚学峥发布了新的文献求助10
20秒前
非要起名发布了新的文献求助10
22秒前
搜集达人应助平淡的钥匙采纳,获得10
26秒前
研友_Ze0vBn完成签到,获得积分10
26秒前
26秒前
26秒前
深情安青应助木鱼采纳,获得10
29秒前
Umar完成签到,获得积分10
29秒前
YH应助Catherine采纳,获得30
30秒前
YuJiao完成签到,获得积分10
30秒前
顾矜应助海洋之心采纳,获得10
30秒前
Waris发布了新的文献求助10
30秒前
SYLH应助非要起名采纳,获得20
31秒前
ddd完成签到 ,获得积分10
31秒前
科研通AI5应助姚学峥采纳,获得10
31秒前
32秒前
NexusExplorer应助yanjiawen采纳,获得10
34秒前
36秒前
奥斯卡完成签到,获得积分0
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747431
求助须知:如何正确求助?哪些是违规求助? 3290072
关于积分的说明 10068060
捐赠科研通 3006185
什么是DOI,文献DOI怎么找? 1650813
邀请新用户注册赠送积分活动 786123
科研通“疑难数据库(出版商)”最低求助积分说明 751463