已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Tuning the Conductivity of Molybdenum Disulfide (MoS2) Thin Films through Defect Engineering

二硫化钼 材料科学 纳米技术 磷烯 光电子学 半导体 晶体管 石墨烯 导电体 电导率 带隙 场效应晶体管 工程物理 电压 电气工程 化学 复合材料 工程类 物理化学
作者
Dipankar Saha,Ravi Selvaganapathy,Peter Kruse
出处
期刊:Meeting abstracts 卷期号:MA2020-01 (10): 867-867
标识
DOI:10.1149/ma2020-0110867mtgabs
摘要

Two-dimensional (2D) materials have attracted much attention over the last decade due to their high performance in nanoelectronic devices. The discovery of graphene opened up many opportunities to investigate and explore other 2D materials. There has been a drive to expand the toolbox of 2D materials to also include insulators and semiconductors with a variety of bandgaps. As a result, a wide range of materials have been discovered or predicted, 1 with molybdenum disulfide (MoS 2 ) being particularly popular. The semiconducting phase of MoS 2 (2H-MoS 2 ) is one of the most commonly studied among the transition metal dichalcogenides. 2 It has a thickness dependent band gap which has drawn attention for field-effect transistors (FET) where a high on/off current ratio is desired. 3-5 However, for applications in batteries, 6 supercapacitors, 7 and solar cells, 8 a substantially increased conductivity is required in order to achieve reasonable currents. Using 2H-MoS 2 requires a relatively high voltage to get sufficient conductivity due to the presence of a band gap. The most common source of conductive MoS 2 is metallic MoS 2 (1T-MoS 2 ) that has been prepared via the lithium intercalation process, which requires inert atmosphere processing and safety procedures. 9 Hence, there is a desire to develop a safer and more efficient process to yield conductive MoS 2. Defects plays a very important role in modulating the electrical properties of MoS 2 . Sonication of MoS 2 in an appropriate solvent results in many disordered structural defects. The most common defects on MoS 2 are sulfur defects. 10 These defects increase the energy level of the gap state and eventually deteriorate the device performance. Thiol based molecules are commonly used to reduce the number of sulfur defects on MoS 2 . 11 Other molecules such as oxygen or organic super acids like bis(trifluoromethane) sulfonamide (TFSI) have also been reported to passivate the surface defect. 12,13 Past research has mainly focused on the theoretical study of defective MoS 2 and how to utilize those defects for improving photoluminescent efficiency. However, those defects can also be utilized to improve the conductivity of MoS 2 as a safer alternative for applications in batteries, supercapacitors, solar cells and sensors. In this work, we show a simple and effective way to prepare few layer conductive MoS 2 under ambient conditions. We have demonstrated that the sheet resistance of the conductive MoS 2 that we prepared is up to five orders of magnitude higher than that of the semiconducting phase of MoS 2 , depending on the dopant concentration. The samples were also characterized with Hall measurements, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. An important goal of our work is to control the conductivity of the MoS 2 thin films in safe and facile ways that enable their application in low-cost chemiresistive sensors in liquid environments. We fabricated chemiresistive pH sensors with centimeter channel lengths while maintaining low measurement voltages. Our study furthers the understanding of conductive forms of MoS 2 , and also opens a new pathway for next generation electronic devices. References: 1. M. D. Segall et al. , J. Phys.: Condens. Matter , 14 , 2717–2744 (2002). 2. H. Wan et al. , RSC Adv., 5 , 7944 (2015). 3. D. Kiriya et al. , J. Am. Chem. Soc. , 136 , 7853−7856 (2014). 4. H. Fang et al. , Nano Lett. , 13 , 1991−1995 (2013). 5. M. Choi et al. , ACS Nano , 8 , 9332-9340 (2014). 6. T. Stephenson et al. , Energy Environ. Sci. , 7 , 209-231 (2014). 7. L. Cao et al. , Small , 9 , 2905–2910 (2013). 8. M.-L.Tsai et al. , ACS Nano , 8 , 8317-8322 (2014). 9. G. Eda et al. , Nano Lett. , 11 , 5111–5116 (2011). 10. A. Dabral et al. , Phys. Chem. Chem. Phys. , 21 , 1089-1099 (2019). 11. D. M. Sim et al. , ACS Nano , 9 , 12115-12123 (2015). 12. K. C. Santosh et al. , J. Appl. Phys. , 117 , 135301 (2015). 13. H. Lu et al. , APL Mater. , 6 , 066104 (2018). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小狗完成签到 ,获得积分10
刚刚
万木春完成签到 ,获得积分10
2秒前
鲤鱼越越完成签到 ,获得积分10
5秒前
6秒前
7秒前
郑雅茵发布了新的文献求助10
8秒前
wqw发布了新的文献求助10
11秒前
14秒前
雪白元风完成签到 ,获得积分10
17秒前
19秒前
从全世界路过完成签到 ,获得积分10
21秒前
爱学习的婷完成签到 ,获得积分10
26秒前
鹿小新完成签到 ,获得积分0
27秒前
程子完成签到,获得积分10
29秒前
Yang完成签到 ,获得积分10
30秒前
Nefelibata完成签到,获得积分10
32秒前
葡紫明完成签到 ,获得积分10
35秒前
wqw完成签到,获得积分10
36秒前
郑雅茵发布了新的文献求助30
37秒前
Zion完成签到,获得积分0
37秒前
40秒前
领导范儿应助皮崇知采纳,获得10
40秒前
令宏发布了新的文献求助10
41秒前
45秒前
45秒前
46秒前
皮崇知完成签到,获得积分10
47秒前
科研废物完成签到 ,获得积分10
50秒前
7777发布了新的文献求助10
50秒前
皮崇知发布了新的文献求助10
51秒前
西门浩宇完成签到 ,获得积分10
54秒前
碳酸芙兰完成签到,获得积分10
58秒前
CipherSage应助糟糕的铁锤采纳,获得10
58秒前
万能图书馆应助马鑫燚采纳,获得10
58秒前
小六九完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
猪猪侠发布了新的文献求助10
1分钟前
科目三应助满意的世界采纳,获得30
1分钟前
Limerencia完成签到,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965542
求助须知:如何正确求助?哪些是违规求助? 3510831
关于积分的说明 11155263
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176