Tuning the Conductivity of Molybdenum Disulfide (MoS2) Thin Films through Defect Engineering

二硫化钼 材料科学 纳米技术 磷烯 光电子学 半导体 晶体管 石墨烯 导电体 电导率 带隙 场效应晶体管 工程物理 电压 电气工程 化学 复合材料 工程类 物理化学
作者
Dipankar Saha,Ravi Selvaganapathy,Peter Kruse
出处
期刊:Meeting abstracts 卷期号:MA2020-01 (10): 867-867
标识
DOI:10.1149/ma2020-0110867mtgabs
摘要

Two-dimensional (2D) materials have attracted much attention over the last decade due to their high performance in nanoelectronic devices. The discovery of graphene opened up many opportunities to investigate and explore other 2D materials. There has been a drive to expand the toolbox of 2D materials to also include insulators and semiconductors with a variety of bandgaps. As a result, a wide range of materials have been discovered or predicted, 1 with molybdenum disulfide (MoS 2 ) being particularly popular. The semiconducting phase of MoS 2 (2H-MoS 2 ) is one of the most commonly studied among the transition metal dichalcogenides. 2 It has a thickness dependent band gap which has drawn attention for field-effect transistors (FET) where a high on/off current ratio is desired. 3-5 However, for applications in batteries, 6 supercapacitors, 7 and solar cells, 8 a substantially increased conductivity is required in order to achieve reasonable currents. Using 2H-MoS 2 requires a relatively high voltage to get sufficient conductivity due to the presence of a band gap. The most common source of conductive MoS 2 is metallic MoS 2 (1T-MoS 2 ) that has been prepared via the lithium intercalation process, which requires inert atmosphere processing and safety procedures. 9 Hence, there is a desire to develop a safer and more efficient process to yield conductive MoS 2. Defects plays a very important role in modulating the electrical properties of MoS 2 . Sonication of MoS 2 in an appropriate solvent results in many disordered structural defects. The most common defects on MoS 2 are sulfur defects. 10 These defects increase the energy level of the gap state and eventually deteriorate the device performance. Thiol based molecules are commonly used to reduce the number of sulfur defects on MoS 2 . 11 Other molecules such as oxygen or organic super acids like bis(trifluoromethane) sulfonamide (TFSI) have also been reported to passivate the surface defect. 12,13 Past research has mainly focused on the theoretical study of defective MoS 2 and how to utilize those defects for improving photoluminescent efficiency. However, those defects can also be utilized to improve the conductivity of MoS 2 as a safer alternative for applications in batteries, supercapacitors, solar cells and sensors. In this work, we show a simple and effective way to prepare few layer conductive MoS 2 under ambient conditions. We have demonstrated that the sheet resistance of the conductive MoS 2 that we prepared is up to five orders of magnitude higher than that of the semiconducting phase of MoS 2 , depending on the dopant concentration. The samples were also characterized with Hall measurements, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. An important goal of our work is to control the conductivity of the MoS 2 thin films in safe and facile ways that enable their application in low-cost chemiresistive sensors in liquid environments. We fabricated chemiresistive pH sensors with centimeter channel lengths while maintaining low measurement voltages. Our study furthers the understanding of conductive forms of MoS 2 , and also opens a new pathway for next generation electronic devices. References: 1. M. D. Segall et al. , J. Phys.: Condens. Matter , 14 , 2717–2744 (2002). 2. H. Wan et al. , RSC Adv., 5 , 7944 (2015). 3. D. Kiriya et al. , J. Am. Chem. Soc. , 136 , 7853−7856 (2014). 4. H. Fang et al. , Nano Lett. , 13 , 1991−1995 (2013). 5. M. Choi et al. , ACS Nano , 8 , 9332-9340 (2014). 6. T. Stephenson et al. , Energy Environ. Sci. , 7 , 209-231 (2014). 7. L. Cao et al. , Small , 9 , 2905–2910 (2013). 8. M.-L.Tsai et al. , ACS Nano , 8 , 8317-8322 (2014). 9. G. Eda et al. , Nano Lett. , 11 , 5111–5116 (2011). 10. A. Dabral et al. , Phys. Chem. Chem. Phys. , 21 , 1089-1099 (2019). 11. D. M. Sim et al. , ACS Nano , 9 , 12115-12123 (2015). 12. K. C. Santosh et al. , J. Appl. Phys. , 117 , 135301 (2015). 13. H. Lu et al. , APL Mater. , 6 , 066104 (2018). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
歪哔巴布完成签到,获得积分10
刚刚
1秒前
1秒前
jbear发布了新的文献求助10
2秒前
歪哔巴布发布了新的文献求助10
3秒前
gj2221423发布了新的文献求助10
3秒前
4秒前
5秒前
研友_VZG7GZ应助开放乐巧采纳,获得10
5秒前
skycrygg521完成签到,获得积分10
5秒前
6秒前
smz发布了新的文献求助30
6秒前
不配.应助小陈要发一区采纳,获得10
7秒前
乐乐应助承宇采纳,获得10
7秒前
学医的小胖子完成签到 ,获得积分10
7秒前
CodeCraft应助七七八八采纳,获得10
8秒前
8秒前
lucky发布了新的文献求助10
8秒前
123完成签到,获得积分20
8秒前
汎影发布了新的文献求助10
8秒前
theyulong发布了新的文献求助10
9秒前
9秒前
10秒前
李爱国应助晨雾采纳,获得10
10秒前
JamesPei应助独白采纳,获得10
10秒前
清秀的凝蝶完成签到,获得积分10
11秒前
11秒前
12秒前
Linyi发布了新的文献求助10
14秒前
斯文败类应助skycrygg采纳,获得10
14秒前
15秒前
liupeng0403117完成签到,获得积分10
15秒前
15秒前
xzc发布了新的文献求助10
16秒前
17秒前
欣慰的夏彤完成签到,获得积分10
18秒前
葛稀完成签到,获得积分10
18秒前
想看不眠日记完成签到,获得积分10
19秒前
sx完成签到,获得积分10
20秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137944
求助须知:如何正确求助?哪些是违规求助? 2788863
关于积分的说明 7788861
捐赠科研通 2445259
什么是DOI,文献DOI怎么找? 1300236
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046