Deep transfer learning based diagnosis for machining process lifecycle

学习迁移 机械加工 计算机科学 卷积神经网络 过程(计算) 人工智能 特征(语言学) 深度学习 领域(数学分析) 机器学习 加权 人工神经网络 断层(地质) 工程类 机械工程 操作系统 放射科 地质学 数学分析 哲学 医学 地震学 语言学 数学
作者
Weidong Li,Yuchen Liang
出处
期刊:Procedia CIRP [Elsevier]
卷期号:90: 642-647 被引量:18
标识
DOI:10.1016/j.procir.2020.02.048
摘要

Faults during machining processes generate negative impacts on productivity, product quality and scrap rate. In recent years, the research of leveraging deep learning algorithms for developing fault diagnostics approaches has been actively conducted. However, the approaches have not been widely adopted by industries yet due to their inadaptability in addressing varying working conditions throughout machining process lifecycles. To overcome the limitation, this paper presents a novel deep transfer learning enabled adaptive diagnostics approach. In the approach, firstly, a Convolutional Neural Network (CNN) is designed to perform diagnostics on machining processes. Then, a transfer learning strategy is incorporated into the CNN to enhance the approach's adaptability for different machining conditions via the following steps: (1) Input datasets from machining conditions are optimally aligned to facilitate cross-domain data reuse; and (2) Weights of the trained CNN are regularized to minimize feature distribution mismatches to implement domain transfer learning. Based on the steps, the CNN can be adaptively applied across the conditions, and thereby re-training processes for the CNN from scratch can be alleviated. The developed approach was validated and benchmarked based on different parameters and settings. In the experiments, comparative results indicate that the approach achieved 94% in accuracy, which was significantly higher than other approaches without transfer learning mechanisms. Peer-review under responsibility of the scientific committee of the 27th CIRP Life Cycle Engineering (LCE) Conference.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddjjhh发布了新的文献求助10
刚刚
Jasper应助ss采纳,获得10
刚刚
清爽访风完成签到,获得积分10
刚刚
求助人员发布了新的文献求助20
1秒前
1秒前
无花果应助zzy加油采纳,获得10
1秒前
科研通AI6应助苹果不平采纳,获得10
2秒前
3秒前
浮游应助不下雨采纳,获得10
4秒前
乐乐应助奇点采纳,获得10
5秒前
5秒前
5秒前
江树远完成签到 ,获得积分10
7秒前
温柔凌晴完成签到,获得积分10
7秒前
7秒前
Na发布了新的文献求助80
9秒前
温柔凌晴发布了新的文献求助10
9秒前
9秒前
科研通AI6应助chenming采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
英俊的铭应助203采纳,获得10
11秒前
12秒前
安之关注了科研通微信公众号
12秒前
linclee完成签到,获得积分10
13秒前
14秒前
jaibin_zong完成签到,获得积分10
14秒前
爆米花应助缓慢元枫采纳,获得10
14秒前
lll发布了新的文献求助10
15秒前
浮游应助夜莺采纳,获得10
16秒前
kita发布了新的文献求助10
16秒前
猪猪hero发布了新的文献求助10
16秒前
17秒前
TANG发布了新的文献求助10
17秒前
清爽访风发布了新的文献求助10
18秒前
Xieyusen完成签到,获得积分10
19秒前
19秒前
20秒前
雾影觅光完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050917
求助须知:如何正确求助?哪些是违规求助? 4278485
关于积分的说明 13336586
捐赠科研通 4093551
什么是DOI,文献DOI怎么找? 2240413
邀请新用户注册赠送积分活动 1247041
关于科研通互助平台的介绍 1176012