Unemployment and Digital Public Goods Contribution

失业 德国的 价值(数学) 业务 用户生成的内容 数字商品 服务(商务) 数字经济 经济 营销 社会化媒体 经济增长 计算机科学 万维网 地理 考古 机器学习
作者
Michael E. Kummer,Olga Slivko,Xiaoquan Zhang
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:31 (3): 801-819 被引量:23
标识
DOI:10.1287/isre.2019.0916
摘要

Economic crises have a harmful effect on employment. However, whereas the resulting loss of jobs has been shown to have many negative consequences for the affected individuals, it may also push them into new activities, such as provision of service to their communities. In this paper, we show how individuals engage in socially useful activities after an increase in unemployment. Specifically, we document increased online content generation at Wikipedia, the world’s largest user-generated knowledge repository. Leveraging German district-level and European country-level unemployment data, we analyze the relationship between the economic crisis in 2008–2010 and contributions to Wikipedia. We find increased socially valuable activity in the form of knowledge acquisition and contributions to Wikipedia. For German districts, we observe an increase in the rate of content generation on Wikipedia in more severely affected districts. These effects are even stronger at the European country level. Our findings suggest that public goods provision increases as a positive side effect of economic crises. We stress that similar patterns could apply to other digital content platforms. Under the backdrop that the potential value of the outcome of online volunteering and its societal impact is expected to grow drastically in the next years, we show that platforms could benefit from negative economic conditions in attracting volunteers. Moreover, in the coming years, the rapid development of artificial intelligence will call for a rise of online volunteering platforms. Therefore, the potential value of the outcome of online volunteering and its societal impact is expected to grow drastically in the next years.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
czx完成签到,获得积分10
刚刚
2秒前
明亮代丝完成签到,获得积分10
3秒前
3秒前
拾光完成签到,获得积分10
3秒前
4秒前
迷人嫣然完成签到,获得积分10
4秒前
12305014077发布了新的文献求助10
5秒前
思源应助西一阿铭采纳,获得10
5秒前
瓦西姆关注了科研通微信公众号
6秒前
惊天大幂幂完成签到,获得积分10
6秒前
豆子完成签到,获得积分10
6秒前
guoxuefan完成签到,获得积分10
7秒前
zzjjyy完成签到,获得积分10
8秒前
9秒前
崔晗发布了新的文献求助10
9秒前
堂风发布了新的文献求助10
10秒前
彭于晏应助果糖不加糖采纳,获得30
11秒前
FF发布了新的文献求助10
13秒前
14秒前
动人的怀柔完成签到,获得积分10
14秒前
不三不四完成签到,获得积分10
14秒前
听见完成签到,获得积分10
15秒前
15秒前
文天烽完成签到,获得积分10
16秒前
yixiaoxiao完成签到,获得积分10
16秒前
18秒前
qsf完成签到,获得积分10
18秒前
18秒前
喃义完成签到,获得积分10
19秒前
研友_Z3342Z完成签到,获得积分10
20秒前
小高同学发布了新的文献求助10
21秒前
闪闪凝冬完成签到,获得积分10
21秒前
21秒前
alexisgood发布了新的文献求助10
22秒前
开朗向真发布了新的文献求助10
22秒前
热心枕头完成签到,获得积分10
23秒前
淡淡的新之完成签到,获得积分10
23秒前
moroa完成签到,获得积分10
25秒前
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736852
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10020999
捐赠科研通 2997447
什么是DOI,文献DOI怎么找? 1644596
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749698