Bezier Search Differential Evolution Algorithm for numerical function optimization

计算机科学 算法 数学 数学优化 差异进化 功能(生物学) 进化生物学 生物
作者
Pınar Çivicioğlu,Erkan Beşdok
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:165: 113875-113875 被引量:60
标识
DOI:10.1016/j.eswa.2020.113875
摘要

Differential Evolution Algorithm (DE) is a commonly used stochastic search method for solving real-valued numerical optimization problems. Unfortunately, DE's problem solving success is very sensitive to the internal parameters of the artificial numerical genetic operators (i.e., mutation and crossover operators) used. Although several mutation and crossover methods have been developed for DE, there is not still an analytical method that can be used to select the most efficient mutation and crossover method while solving a problem with DE. Therefore, selection and parameter tuning processes of artificial numerical genetic operators used by DE are based on a trial-and-error process which is time consuming. The development of modern DE versions has been focused on developing fast, structurally simple and efficient genetic operators that are not sensitive to the initial values of their internal parameters. Problem solving successes of the Universal Differential Algorithms (uDE) are not sensitive to the structure and internal parameters of the related artificial numerical genetic operators used, unlike DE. In this paper a new uDE, Bezier Search Differential Evolution Algorithm, BeSD, has been proposed. BeSD's mutation and crossover operators are structurally simple, fast, unique and produce highly efficient trial patterns. BeSD utilizes a partially elitist unique mutation operator and a unique crossover operator. In this paper, the experiments were performed by using the 30 benchmark problems of CEC2014 with Dim=30, and one 3D viewshed problem as a real world application. The problem solving success of BeSD was statistically compared with five top-methods of CEC2014, i.e., CRMLSP, MVO, WA, SHADE and LSHADE by using Wilcoxon Signed Rank test. Statistical results exposed that BeSD's problem solving success is better than those of the comparison methods in general.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XUHYBOR完成签到,获得积分10
刚刚
清蒸鱼发布了新的文献求助10
1秒前
1秒前
1秒前
3秒前
Magical发布了新的文献求助10
4秒前
ha哈发布了新的文献求助10
5秒前
粉条发布了新的文献求助10
6秒前
7秒前
7秒前
无花果应助蜡笔小新采纳,获得10
8秒前
清脆的灵煌完成签到,获得积分20
8秒前
vg完成签到,获得积分10
8秒前
10秒前
杨过和雕完成签到 ,获得积分10
10秒前
11秒前
12秒前
ding应助XUHYBOR采纳,获得10
14秒前
娟儿发布了新的文献求助10
14秒前
16秒前
liars发布了新的文献求助10
16秒前
Doctor_mao发布了新的文献求助20
16秒前
wanci应助超帅怜阳采纳,获得10
17秒前
澡雪发布了新的文献求助10
17秒前
传奇3应助欣慰的乌冬面采纳,获得20
19秒前
热爱生活的打工人完成签到,获得积分10
19秒前
lyt完成签到,获得积分20
21秒前
ZGZ123应助罗舒采纳,获得20
22秒前
LQ完成签到,获得积分10
22秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
27秒前
Owen应助研友_nvG5bZ采纳,获得10
28秒前
29秒前
罗舒给罗舒的求助进行了留言
29秒前
超帅怜阳发布了新的文献求助10
30秒前
31秒前
万能图书馆应助伶俐一曲采纳,获得10
32秒前
马亚飞发布了新的文献求助10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975516
求助须知:如何正确求助?哪些是违规求助? 3519930
关于积分的说明 11200130
捐赠科研通 3256278
什么是DOI,文献DOI怎么找? 1798183
邀请新用户注册赠送积分活动 877425
科研通“疑难数据库(出版商)”最低求助积分说明 806320