Bezier Search Differential Evolution Algorithm for numerical function optimization

计算机科学 算法 数学 数学优化 差异进化 功能(生物学) 进化生物学 生物
作者
Pınar Çivicioğlu,Erkan Beşdok
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:165: 113875-113875 被引量:60
标识
DOI:10.1016/j.eswa.2020.113875
摘要

Differential Evolution Algorithm (DE) is a commonly used stochastic search method for solving real-valued numerical optimization problems. Unfortunately, DE's problem solving success is very sensitive to the internal parameters of the artificial numerical genetic operators (i.e., mutation and crossover operators) used. Although several mutation and crossover methods have been developed for DE, there is not still an analytical method that can be used to select the most efficient mutation and crossover method while solving a problem with DE. Therefore, selection and parameter tuning processes of artificial numerical genetic operators used by DE are based on a trial-and-error process which is time consuming. The development of modern DE versions has been focused on developing fast, structurally simple and efficient genetic operators that are not sensitive to the initial values of their internal parameters. Problem solving successes of the Universal Differential Algorithms (uDE) are not sensitive to the structure and internal parameters of the related artificial numerical genetic operators used, unlike DE. In this paper a new uDE, Bezier Search Differential Evolution Algorithm, BeSD, has been proposed. BeSD's mutation and crossover operators are structurally simple, fast, unique and produce highly efficient trial patterns. BeSD utilizes a partially elitist unique mutation operator and a unique crossover operator. In this paper, the experiments were performed by using the 30 benchmark problems of CEC2014 with Dim=30, and one 3D viewshed problem as a real world application. The problem solving success of BeSD was statistically compared with five top-methods of CEC2014, i.e., CRMLSP, MVO, WA, SHADE and LSHADE by using Wilcoxon Signed Rank test. Statistical results exposed that BeSD's problem solving success is better than those of the comparison methods in general.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助典雅的惜霜采纳,获得10
刚刚
彭于晏应助llllllb采纳,获得10
刚刚
科研通AI5应助正直的擎宇采纳,获得10
刚刚
情怀应助正直的擎宇采纳,获得100
刚刚
刚刚
1秒前
1秒前
大模型应助早睡早起采纳,获得10
2秒前
英姑应助王圈采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助50
4秒前
5秒前
6秒前
WUHUIWEN完成签到,获得积分10
6秒前
蒸汽秋葵完成签到 ,获得积分10
7秒前
新羽发布了新的文献求助10
7秒前
CoCo完成签到,获得积分10
7秒前
莫愁完成签到,获得积分10
7秒前
舒服的如蓉完成签到,获得积分10
8秒前
Zzz完成签到 ,获得积分10
8秒前
8秒前
ljf发布了新的文献求助10
8秒前
zhouyan完成签到,获得积分10
8秒前
li发布了新的文献求助50
9秒前
程瑞哲完成签到,获得积分10
9秒前
未来完成签到,获得积分20
10秒前
车非笑发布了新的文献求助50
10秒前
magiczhu完成签到,获得积分10
11秒前
Lucia完成签到 ,获得积分10
11秒前
13秒前
13秒前
13秒前
llllllb发布了新的文献求助10
13秒前
程瑞哲发布了新的文献求助10
14秒前
Lionnn完成签到 ,获得积分10
14秒前
Youdge完成签到,获得积分10
15秒前
小许完成签到 ,获得积分10
15秒前
坦率的大神完成签到,获得积分10
15秒前
16秒前
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132277
求助须知:如何正确求助?哪些是违规求助? 4333736
关于积分的说明 13502006
捐赠科研通 4170755
什么是DOI,文献DOI怎么找? 2286630
邀请新用户注册赠送积分活动 1287527
关于科研通互助平台的介绍 1228447