Bezier Search Differential Evolution Algorithm for numerical function optimization

计算机科学 算法 数学 数学优化 差异进化 功能(生物学) 进化生物学 生物
作者
Pınar Çivicioğlu,Erkan Beşdok
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:165: 113875-113875 被引量:60
标识
DOI:10.1016/j.eswa.2020.113875
摘要

Differential Evolution Algorithm (DE) is a commonly used stochastic search method for solving real-valued numerical optimization problems. Unfortunately, DE's problem solving success is very sensitive to the internal parameters of the artificial numerical genetic operators (i.e., mutation and crossover operators) used. Although several mutation and crossover methods have been developed for DE, there is not still an analytical method that can be used to select the most efficient mutation and crossover method while solving a problem with DE. Therefore, selection and parameter tuning processes of artificial numerical genetic operators used by DE are based on a trial-and-error process which is time consuming. The development of modern DE versions has been focused on developing fast, structurally simple and efficient genetic operators that are not sensitive to the initial values of their internal parameters. Problem solving successes of the Universal Differential Algorithms (uDE) are not sensitive to the structure and internal parameters of the related artificial numerical genetic operators used, unlike DE. In this paper a new uDE, Bezier Search Differential Evolution Algorithm, BeSD, has been proposed. BeSD's mutation and crossover operators are structurally simple, fast, unique and produce highly efficient trial patterns. BeSD utilizes a partially elitist unique mutation operator and a unique crossover operator. In this paper, the experiments were performed by using the 30 benchmark problems of CEC2014 with Dim=30, and one 3D viewshed problem as a real world application. The problem solving success of BeSD was statistically compared with five top-methods of CEC2014, i.e., CRMLSP, MVO, WA, SHADE and LSHADE by using Wilcoxon Signed Rank test. Statistical results exposed that BeSD's problem solving success is better than those of the comparison methods in general.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
10完成签到,获得积分10
1秒前
爆米花应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
wlscj应助科研通管家采纳,获得20
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
4秒前
哈基米德应助科研通管家采纳,获得20
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
clark完成签到,获得积分10
4秒前
4秒前
4秒前
无花果应助羊觅夏采纳,获得10
4秒前
4秒前
bkagyin应助K. G.采纳,获得10
4秒前
子卿完成签到,获得积分10
5秒前
星星完成签到,获得积分10
5秒前
5秒前
MM完成签到,获得积分10
5秒前
zs发布了新的文献求助10
6秒前
Annnnnnn发布了新的文献求助10
6秒前
7秒前
整齐的傲之完成签到,获得积分10
7秒前
陈同学发布了新的文献求助10
8秒前
牙牙发布了新的文献求助10
9秒前
yuhui完成签到,获得积分10
9秒前
Guo完成签到 ,获得积分20
9秒前
隐形曼青应助小星星668采纳,获得10
9秒前
乐乐应助箫涵采纳,获得10
9秒前
9秒前
polarisier发布了新的文献求助10
9秒前
丘比特应助古朵采纳,获得10
9秒前
boli发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329293
求助须知:如何正确求助?哪些是违规求助? 4468822
关于积分的说明 13906962
捐赠科研通 4361865
什么是DOI,文献DOI怎么找? 2396049
邀请新用户注册赠送积分活动 1389427
关于科研通互助平台的介绍 1360272