Bezier Search Differential Evolution Algorithm for numerical function optimization

计算机科学 算法 数学 数学优化 差异进化 功能(生物学) 进化生物学 生物
作者
Pınar Çivicioğlu,Erkan Beşdok
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:165: 113875-113875 被引量:60
标识
DOI:10.1016/j.eswa.2020.113875
摘要

Differential Evolution Algorithm (DE) is a commonly used stochastic search method for solving real-valued numerical optimization problems. Unfortunately, DE's problem solving success is very sensitive to the internal parameters of the artificial numerical genetic operators (i.e., mutation and crossover operators) used. Although several mutation and crossover methods have been developed for DE, there is not still an analytical method that can be used to select the most efficient mutation and crossover method while solving a problem with DE. Therefore, selection and parameter tuning processes of artificial numerical genetic operators used by DE are based on a trial-and-error process which is time consuming. The development of modern DE versions has been focused on developing fast, structurally simple and efficient genetic operators that are not sensitive to the initial values of their internal parameters. Problem solving successes of the Universal Differential Algorithms (uDE) are not sensitive to the structure and internal parameters of the related artificial numerical genetic operators used, unlike DE. In this paper a new uDE, Bezier Search Differential Evolution Algorithm, BeSD, has been proposed. BeSD's mutation and crossover operators are structurally simple, fast, unique and produce highly efficient trial patterns. BeSD utilizes a partially elitist unique mutation operator and a unique crossover operator. In this paper, the experiments were performed by using the 30 benchmark problems of CEC2014 with Dim=30, and one 3D viewshed problem as a real world application. The problem solving success of BeSD was statistically compared with five top-methods of CEC2014, i.e., CRMLSP, MVO, WA, SHADE and LSHADE by using Wilcoxon Signed Rank test. Statistical results exposed that BeSD's problem solving success is better than those of the comparison methods in general.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
waNLKVN发布了新的文献求助10
刚刚
1秒前
1秒前
小马甲应助葫芦大王采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
无尽夏完成签到 ,获得积分10
2秒前
旺仔来求学完成签到,获得积分10
4秒前
4秒前
andrele完成签到,获得积分10
4秒前
Jasper应助TanYa采纳,获得10
4秒前
6秒前
FashionBoy应助cc采纳,获得10
7秒前
大脚完成签到,获得积分10
7秒前
坚定亦玉完成签到,获得积分20
7秒前
7秒前
虚心碧发布了新的文献求助30
7秒前
8秒前
Orange应助ling采纳,获得10
10秒前
10秒前
10秒前
12秒前
扶风完成签到 ,获得积分10
12秒前
周老八发布了新的文献求助10
13秒前
华仔应助大邓宝采纳,获得10
13秒前
nancyrui发布了新的文献求助10
13秒前
能干大树完成签到,获得积分10
15秒前
婷婷发布了新的文献求助10
16秒前
科研通AI2S应助shen采纳,获得10
17秒前
阿洁发布了新的文献求助10
17秒前
浮游应助和花花采纳,获得10
17秒前
18秒前
cc完成签到,获得积分10
19秒前
刘奕发布了新的文献求助10
20秒前
吃花生酱的猫完成签到,获得积分10
20秒前
法外狂徒应助南北采纳,获得200
20秒前
木子李完成签到,获得积分10
21秒前
cc发布了新的文献求助10
22秒前
扶风关注了科研通微信公众号
22秒前
希望天下0贩的0应助wangyue采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943511
求助须知:如何正确求助?哪些是违规求助? 4208626
关于积分的说明 13083631
捐赠科研通 3988108
什么是DOI,文献DOI怎么找? 2183472
邀请新用户注册赠送积分活动 1199004
关于科研通互助平台的介绍 1111654