Bezier Search Differential Evolution Algorithm for numerical function optimization

计算机科学 算法 数学 数学优化 差异进化 功能(生物学) 进化生物学 生物
作者
Pınar Çivicioğlu,Erkan Beşdok
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:165: 113875-113875 被引量:60
标识
DOI:10.1016/j.eswa.2020.113875
摘要

Differential Evolution Algorithm (DE) is a commonly used stochastic search method for solving real-valued numerical optimization problems. Unfortunately, DE's problem solving success is very sensitive to the internal parameters of the artificial numerical genetic operators (i.e., mutation and crossover operators) used. Although several mutation and crossover methods have been developed for DE, there is not still an analytical method that can be used to select the most efficient mutation and crossover method while solving a problem with DE. Therefore, selection and parameter tuning processes of artificial numerical genetic operators used by DE are based on a trial-and-error process which is time consuming. The development of modern DE versions has been focused on developing fast, structurally simple and efficient genetic operators that are not sensitive to the initial values of their internal parameters. Problem solving successes of the Universal Differential Algorithms (uDE) are not sensitive to the structure and internal parameters of the related artificial numerical genetic operators used, unlike DE. In this paper a new uDE, Bezier Search Differential Evolution Algorithm, BeSD, has been proposed. BeSD's mutation and crossover operators are structurally simple, fast, unique and produce highly efficient trial patterns. BeSD utilizes a partially elitist unique mutation operator and a unique crossover operator. In this paper, the experiments were performed by using the 30 benchmark problems of CEC2014 with Dim=30, and one 3D viewshed problem as a real world application. The problem solving success of BeSD was statistically compared with five top-methods of CEC2014, i.e., CRMLSP, MVO, WA, SHADE and LSHADE by using Wilcoxon Signed Rank test. Statistical results exposed that BeSD's problem solving success is better than those of the comparison methods in general.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
z3Q应助gilderf采纳,获得10
1秒前
Singularity应助gilderf采纳,获得10
1秒前
小台完成签到,获得积分10
1秒前
2秒前
欢喜恶天发布了新的文献求助10
3秒前
柳友灵完成签到,获得积分20
3秒前
3秒前
4秒前
明理的惜蕊应助andy_lee采纳,获得10
5秒前
Davidhhw发布了新的文献求助10
5秒前
LLLLLL完成签到,获得积分10
6秒前
LIU完成签到,获得积分10
6秒前
ddkkkkkk完成签到,获得积分10
6秒前
白露发布了新的文献求助10
7秒前
柳友灵发布了新的文献求助10
8秒前
8秒前
李大海发布了新的文献求助10
10秒前
11秒前
12秒前
落竹发布了新的文献求助10
12秒前
啦啦啦啦啦完成签到,获得积分10
12秒前
慕青应助小新小新采纳,获得10
13秒前
动静结合完成签到 ,获得积分10
14秒前
在风之笑发布了新的文献求助10
14秒前
14秒前
Lucas应助朱曼曼采纳,获得10
15秒前
tianwenxiaozi关注了科研通微信公众号
15秒前
NI完成签到,获得积分10
15秒前
hollow完成签到,获得积分10
16秒前
16秒前
Jasper应助jhui23z采纳,获得10
16秒前
hutian发布了新的文献求助10
17秒前
隐形曼青应助JJ采纳,获得10
18秒前
19秒前
归尘发布了新的文献求助10
19秒前
兴奋冷松完成签到,获得积分10
19秒前
19秒前
坦率抽屉完成签到 ,获得积分10
20秒前
Davidhhw发布了新的文献求助10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305528
求助须知:如何正确求助?哪些是违规求助? 2939246
关于积分的说明 8492531
捐赠科研通 2613686
什么是DOI,文献DOI怎么找? 1427569
科研通“疑难数据库(出版商)”最低求助积分说明 663114
邀请新用户注册赠送积分活动 647864