Bezier Search Differential Evolution Algorithm for numerical function optimization

计算机科学 算法 数学 数学优化 差异进化 功能(生物学) 进化生物学 生物
作者
Pınar Çivicioğlu,Erkan Beşdok
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:165: 113875-113875 被引量:60
标识
DOI:10.1016/j.eswa.2020.113875
摘要

Differential Evolution Algorithm (DE) is a commonly used stochastic search method for solving real-valued numerical optimization problems. Unfortunately, DE's problem solving success is very sensitive to the internal parameters of the artificial numerical genetic operators (i.e., mutation and crossover operators) used. Although several mutation and crossover methods have been developed for DE, there is not still an analytical method that can be used to select the most efficient mutation and crossover method while solving a problem with DE. Therefore, selection and parameter tuning processes of artificial numerical genetic operators used by DE are based on a trial-and-error process which is time consuming. The development of modern DE versions has been focused on developing fast, structurally simple and efficient genetic operators that are not sensitive to the initial values of their internal parameters. Problem solving successes of the Universal Differential Algorithms (uDE) are not sensitive to the structure and internal parameters of the related artificial numerical genetic operators used, unlike DE. In this paper a new uDE, Bezier Search Differential Evolution Algorithm, BeSD, has been proposed. BeSD's mutation and crossover operators are structurally simple, fast, unique and produce highly efficient trial patterns. BeSD utilizes a partially elitist unique mutation operator and a unique crossover operator. In this paper, the experiments were performed by using the 30 benchmark problems of CEC2014 with Dim=30, and one 3D viewshed problem as a real world application. The problem solving success of BeSD was statistically compared with five top-methods of CEC2014, i.e., CRMLSP, MVO, WA, SHADE and LSHADE by using Wilcoxon Signed Rank test. Statistical results exposed that BeSD's problem solving success is better than those of the comparison methods in general.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Silole完成签到,获得积分10
刚刚
Yong-AI-BUPT完成签到,获得积分10
7秒前
júpiter完成签到,获得积分10
8秒前
qiaoxi完成签到,获得积分10
8秒前
8秒前
cuddly完成签到 ,获得积分10
9秒前
mzrrong完成签到 ,获得积分10
10秒前
酢浆草小熊完成签到 ,获得积分10
11秒前
mcl发布了新的文献求助10
13秒前
chun完成签到 ,获得积分10
14秒前
顺利的曼寒完成签到 ,获得积分10
16秒前
firewood完成签到,获得积分10
20秒前
hh完成签到 ,获得积分10
20秒前
与一完成签到 ,获得积分10
20秒前
fomo完成签到,获得积分10
21秒前
OO圈圈完成签到,获得积分10
24秒前
yellow完成签到 ,获得积分10
24秒前
犹豫的若完成签到,获得积分10
25秒前
暮雪残梅完成签到 ,获得积分10
26秒前
海意完成签到,获得积分10
26秒前
大力的诗蕾完成签到 ,获得积分10
26秒前
松柏完成签到 ,获得积分10
27秒前
帆帆帆完成签到 ,获得积分10
28秒前
一只鲨呱完成签到,获得积分10
34秒前
Marshall完成签到 ,获得积分10
38秒前
尊敬秋双完成签到 ,获得积分10
42秒前
不爱吃鱼的猫完成签到,获得积分10
44秒前
月亮完成签到 ,获得积分10
44秒前
影像大侠完成签到,获得积分10
46秒前
踢球的孩子完成签到 ,获得积分10
48秒前
美丽的鞋垫完成签到 ,获得积分10
51秒前
nusiew完成签到,获得积分10
51秒前
tonydymt完成签到 ,获得积分10
52秒前
chenying完成签到 ,获得积分0
53秒前
mojomars完成签到,获得积分10
53秒前
TiY完成签到 ,获得积分10
54秒前
55秒前
zoe完成签到 ,获得积分10
57秒前
蓝意完成签到,获得积分0
59秒前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513391
关于积分的说明 11167428
捐赠科研通 3248822
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875116
科研通“疑难数据库(出版商)”最低求助积分说明 804664