FTRANS

计算机科学 现场可编程门阵列 变压器 计算 并行计算 循环神经网络 高效能源利用 块(置换群论) 计算机工程 人工智能 计算机体系结构 人工神经网络 算法 嵌入式系统 电压 量子力学 电气工程 物理 工程类 数学 几何学
作者
Bingbing Li,Santosh Pandey,Haowen Fang,Yanjun Lyv,Ji Li,Jieyang Chen,Mimi Xie,Lipeng Wan,Hang Liu,Caiwen Ding
标识
DOI:10.1145/3370748.3406567
摘要

In natural language processing (NLP), the "Transformer" architecture was proposed as the first transduction model replying entirely on self-attention mechanisms without using sequence-aligned recurrent neural networks (RNNs) or convolution, and it achieved significant improvements for sequence to sequence tasks. The introduced intensive computation and storage of these pre-trained language representations has impeded their popularity into computation and memory constrained devices. The field-programmable gate array (FPGA) is widely used to accelerate deep learning algorithms for its high parallelism and low latency. However, the trained models are still too large to accommodate to an FPGA fabric. In this paper, we propose an efficient acceleration framework, Ftrans, for transformer-based large scale language representations. Our framework includes enhanced block-circulant matrix (BCM)-based weight representation to enable model compression on large-scale language representations at the algorithm level with few accuracy degradation, and an acceleration design at the architecture level. Experimental results show that our proposed framework significantly reduce the model size of NLP models by up to 16 times. Our FPGA design achieves 27.07× and 81 × improvement in performance and energy efficiency compared to CPU, and up to 8.80× improvement in energy efficiency compared to GPU.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助孤巷的猫采纳,获得10
刚刚
1秒前
华仔应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
清清完成签到,获得积分10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
杨啸林发布了新的文献求助10
2秒前
长安完成签到 ,获得积分10
3秒前
kytkk完成签到,获得积分20
3秒前
3秒前
嘴嘴完成签到,获得积分10
3秒前
luori217完成签到,获得积分10
3秒前
王月缶应助吴彦祖采纳,获得10
4秒前
酷波er应助垃圾筐采纳,获得10
4秒前
ouwen完成签到,获得积分10
4秒前
俊逸千山完成签到,获得积分20
4秒前
5秒前
超越完成签到,获得积分10
5秒前
霸气远锋发布了新的文献求助10
5秒前
Dali应助fenghao采纳,获得10
5秒前
6秒前
6秒前
小白菜发布了新的文献求助10
7秒前
天天快乐应助ohh采纳,获得10
7秒前
大福同学完成签到,获得积分10
8秒前
柠檬zky发布了新的文献求助10
8秒前
yu发布了新的文献求助10
8秒前
9秒前
阿童木完成签到,获得积分10
9秒前
研友_VZG7GZ应助忧心的康采纳,获得30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578302
求助须知:如何正确求助?哪些是违规求助? 4663150
关于积分的说明 14745051
捐赠科研通 4603900
什么是DOI,文献DOI怎么找? 2526774
邀请新用户注册赠送积分活动 1496369
关于科研通互助平台的介绍 1465712