亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks

山崩 数字高程模型 计算机科学 卷积神经网络 人工智能 深度学习 卫星图像 遥感 模式识别(心理学) 地质学 地震学
作者
Shunping Ji,Dawen Yu,Chaoyong Shen,Weile Li,Qiang Xu
出处
期刊:Landslides [Springer Nature]
卷期号:17 (6): 1337-1352 被引量:233
标识
DOI:10.1007/s10346-020-01353-2
摘要

Convolution neural network (CNN) is an effective and popular deep learning method which automatically learns complicated non-linear mapping from original inputs to given labels or ground truth through a series of convolutional layers. This study focuses on detecting landslides from high-resolution optical satellite images using CNN-based methods, providing opportunities for recognizing latent landslides and updating large-scale landslide inventory with high accuracy and time efficiency. Considering the variety of landslides and complicated backgrounds, attention mechanisms originated from the human visual system are developed for boosting the CNN to extract more distinctive feature representations of landslides from backgrounds. As deep learning needs a large number of labeled data to train a learning model, we manually prepared a landslide dataset which is located in the Bijie city, China. In the dataset, 770 landslides, including rock falls, rock slides, and a few debris slides, were interpreted by geologists from the satellite images and digital elevation model (DEM) data and further checked by fieldwork. The landslide data was separated into a training set that trains the attention boosted CNN model and a testing set that evaluates the performance of the model with a ratio of 2:1. The experimental results showed that the best F1-score of landslide detection reached 96.62%. The results also proved that the performance of our spatial-channel attention mechanism was fairly over other recent attention mechanisms. Additionally, the effectiveness of predicting new potential landslides with high efficiency based on our dataset is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助上帝选中的干电池采纳,获得10
2秒前
JamesPei应助dpp采纳,获得10
7秒前
12秒前
popo发布了新的文献求助10
18秒前
nadia完成签到,获得积分10
22秒前
26秒前
losago4954完成签到,获得积分10
33秒前
winkyyang完成签到 ,获得积分10
38秒前
skier发布了新的文献求助10
45秒前
LLL完成签到,获得积分10
52秒前
52秒前
zhouhao完成签到 ,获得积分10
54秒前
Science发布了新的文献求助10
57秒前
福明明完成签到,获得积分10
58秒前
打打应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得30
1分钟前
慕青应助Science采纳,获得10
1分钟前
1分钟前
潘润朗完成签到 ,获得积分10
1分钟前
bkagyin应助糊涂涂采纳,获得10
1分钟前
1分钟前
1分钟前
kbcbwb2002完成签到,获得积分10
1分钟前
1分钟前
小猫恰饭发布了新的文献求助10
1分钟前
1分钟前
kxx发布了新的文献求助10
1分钟前
genomed应助kxx采纳,获得10
1分钟前
小猫恰饭完成签到,获得积分10
1分钟前
杨tong完成签到 ,获得积分10
1分钟前
yangjoy完成签到 ,获得积分10
2分钟前
崔宁宁发布了新的文献求助20
2分钟前
小王完成签到 ,获得积分10
2分钟前
2分钟前
re发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3213127
求助须知:如何正确求助?哪些是违规求助? 2861908
关于积分的说明 8131084
捐赠科研通 2527829
什么是DOI,文献DOI怎么找? 1361805
科研通“疑难数据库(出版商)”最低求助积分说明 643516
邀请新用户注册赠送积分活动 615877