已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks

山崩 数字高程模型 计算机科学 卷积神经网络 人工智能 深度学习 卫星图像 遥感 模式识别(心理学) 地质学 地震学
作者
Shunping Ji,Dawen Yu,Chaoyong Shen,Weile Li,Qiang Xu
出处
期刊:Landslides [Springer Science+Business Media]
卷期号:17 (6): 1337-1352 被引量:290
标识
DOI:10.1007/s10346-020-01353-2
摘要

Convolution neural network (CNN) is an effective and popular deep learning method which automatically learns complicated non-linear mapping from original inputs to given labels or ground truth through a series of convolutional layers. This study focuses on detecting landslides from high-resolution optical satellite images using CNN-based methods, providing opportunities for recognizing latent landslides and updating large-scale landslide inventory with high accuracy and time efficiency. Considering the variety of landslides and complicated backgrounds, attention mechanisms originated from the human visual system are developed for boosting the CNN to extract more distinctive feature representations of landslides from backgrounds. As deep learning needs a large number of labeled data to train a learning model, we manually prepared a landslide dataset which is located in the Bijie city, China. In the dataset, 770 landslides, including rock falls, rock slides, and a few debris slides, were interpreted by geologists from the satellite images and digital elevation model (DEM) data and further checked by fieldwork. The landslide data was separated into a training set that trains the attention boosted CNN model and a testing set that evaluates the performance of the model with a ratio of 2:1. The experimental results showed that the best F1-score of landslide detection reached 96.62%. The results also proved that the performance of our spatial-channel attention mechanism was fairly over other recent attention mechanisms. Additionally, the effectiveness of predicting new potential landslides with high efficiency based on our dataset is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
为你钟情完成签到 ,获得积分10
1秒前
Hopping完成签到 ,获得积分10
2秒前
2秒前
李健的小迷弟应助宋禄达采纳,获得10
4秒前
小土豆完成签到 ,获得积分10
5秒前
Irelia发布了新的文献求助10
8秒前
kytm完成签到,获得积分10
9秒前
糖糖完成签到 ,获得积分10
10秒前
南宫初柒完成签到 ,获得积分10
12秒前
yuqinghui98完成签到 ,获得积分10
13秒前
ZZZYJ完成签到,获得积分20
14秒前
fishcool完成签到,获得积分10
14秒前
34完成签到,获得积分10
14秒前
SciGPT应助李思琦采纳,获得10
16秒前
17秒前
pjxxx完成签到 ,获得积分10
19秒前
欧阳小枫完成签到 ,获得积分10
19秒前
Jessica完成签到 ,获得积分10
20秒前
几两完成签到 ,获得积分10
20秒前
李健应助dalibaba采纳,获得10
20秒前
小王好饿完成签到 ,获得积分10
21秒前
小碗完成签到 ,获得积分10
21秒前
23秒前
23秒前
24秒前
王晓完成签到,获得积分10
27秒前
李健应助小羊琳采纳,获得10
28秒前
大碗完成签到 ,获得积分10
28秒前
儿学化学打断腿完成签到,获得积分10
28秒前
CH3OH完成签到,获得积分10
28秒前
Survivor完成签到,获得积分10
29秒前
嘉嘉发布了新的文献求助10
29秒前
29秒前
30秒前
mmyhn完成签到,获得积分10
33秒前
dalibaba发布了新的文献求助10
34秒前
清秀芝麻完成签到 ,获得积分10
34秒前
风中元瑶完成签到 ,获得积分10
35秒前
yu完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5243973
求助须知:如何正确求助?哪些是违规求助? 4410181
关于积分的说明 13727358
捐赠科研通 4279798
什么是DOI,文献DOI怎么找? 2348297
邀请新用户注册赠送积分活动 1345551
关于科研通互助平台的介绍 1303731

今日热心研友

St
6 100
嘻嘻哈哈
5 10
eric888
30
tuanheqi
3
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10