过电位
材料科学
三聚氰胺
热解
双功能
化学工程
碳纤维
电池(电)
催化作用
锌
电化学
无机化学
析氧
化学
电极
有机化学
复合数
冶金
复合材料
量子力学
功率(物理)
物理化学
工程类
物理
作者
Caixia Xiao,Jinjin Luo,Mingyue Tan,Yingying Xiao,Bifen Gao,Yun Zheng,Bi‐Zhou Lin
标识
DOI:10.1016/j.jpowsour.2020.227900
摘要
Developing stable and efficient ORR/OER cathode catalysts is crucial to achieve large-scale practical applications for zinc-air battery. Herein, Co/CoNx decorated N-doped porous carbon hybrids with two different morphologies were prepared using commercially available melamine sponge as the precursor. Direct two steps of pyrolysis produced N-doped porous carbon covered with Co/CoNx decorated CNTs ([email protected]/MSC) with highly dispersed Co2N moiety, while the chemical activation of KOH and the followed high-temperature pyrolysis obtained N,Co co-doped hierarchically porous carbon (Co/HMSC) with CoN, Co2N and CoC8 moieties. Co/HMSC exhibits more excellent bifunctional ORR/OER electrocatalytic activity with an ORR onset potential of 0.95 V, an ORR half-wave potential of 0.84 V, an OER overpotential of 396 mV and an ultralow potential gap of 0.78 V, superior to most previous reports. The assembled Co/HMSC-based Zn-air battery shows excellent rechargeability with a small 0.2 V drop in its continuous charge-discharge cycles for 51.6 h at 10 mA cm−2. The superiority of Co/HMSC is ascribed to the high specific surface area, the affluent active sites and the synergistic effect between the CoNx/CoCx active moieties and the nitrogen-doped carbon support.
科研通智能强力驱动
Strongly Powered by AbleSci AI