Deep-learning-based prediction of late age-related macular degeneration progression

黄斑变性 眼底(子宫) 置信区间 德鲁森 接收机工作特性 医学 曲线下面积 卷积神经网络 眼科 人工智能 内科学 计算机科学
作者
Qi Yan,Daniel E. Weeks,Hongyi Xin,Anand Swaroop,Emily Y. Chew,Heng Huang,Ying Ding,Wei Chen
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (2): 141-150 被引量:109
标识
DOI:10.1038/s42256-020-0154-9
摘要

Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is primarily measured by images of the fundus of the retina and recently developed machine learning methods can successfully predict AMD progression using image data. However, none of these methods have used both genetic and image data for predicting AMD progression. Here we used both genotypes and fundus images to predict whether an eye had progressed to late AMD with a modified deep convolutional neural network. In total, we used 31,262 fundus images and 52 AMD-associated genetic variants from 1,351 subjects from the Age-Related Eye Disease Study, which provided disease severity phenotypes and fundus images available at baseline and follow-up visits over a period of 12 years. Our results showed that fundus images coupled with genotypes could predict late AMD progression with an averaged area-under-the-curve value of 0.85 (95% confidence interval 0.83–0.86). The results using fundus images alone showed an averaged area under the receiver operating characteristic curve value of 0.81 (95% confidence interval 0.80–0.83). We implemented our model in a cloud-based application for individual risk assessment. Age-related macular degeneration is a serious eye disease which should be detected as early as possible. Using both fundus images and genetic information, a deep neural network is able to detect the severity of the disease and predict its progression seven years into the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助笑柳采纳,获得10
刚刚
lll完成签到,获得积分10
1秒前
1秒前
3秒前
4秒前
4秒前
初识应助愉快的夏柳采纳,获得10
5秒前
科研通AI5应助Yue采纳,获得30
5秒前
坛子发布了新的文献求助10
5秒前
6秒前
6秒前
天天962068应助Kgron采纳,获得10
6秒前
tianhongfang发布了新的文献求助10
7秒前
7秒前
OK发布了新的文献求助10
8秒前
句芒完成签到 ,获得积分10
8秒前
joysa发布了新的文献求助10
10秒前
10秒前
哒哒李发布了新的文献求助10
10秒前
10秒前
CodeCraft应助坑仔采纳,获得10
11秒前
科目三应助Yuciyy采纳,获得10
12秒前
LUMOS完成签到,获得积分10
12秒前
无花果应助潘特采纳,获得10
12秒前
善学以致用应助全若之采纳,获得10
12秒前
伍侑啦啦完成签到,获得积分10
13秒前
nimonimo发布了新的文献求助10
13秒前
无花果应助OK采纳,获得10
14秒前
jason0023发布了新的文献求助10
14秒前
科研通AI5应助咪芽采纳,获得10
15秒前
feb完成签到,获得积分10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
TaoJ应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
16秒前
zhongu应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
TaoJ应助科研通管家采纳,获得10
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489663
求助须知:如何正确求助?哪些是违规求助? 3076816
关于积分的说明 9146521
捐赠科研通 2769021
什么是DOI,文献DOI怎么找? 1519578
邀请新用户注册赠送积分活动 704012
科研通“疑难数据库(出版商)”最低求助积分说明 702053