Lymph-vascular space invasion prediction in cervical cancer: Exploring radiomics and deep learning multilevel features of tumor and peritumor tissue on multiparametric MRI

医学 队列 无线电技术 计算机科学 深度学习 放射科 人工智能 磁共振成像 病理
作者
Wenqing Hua,Taohui Xiao,Xiran Jiang,Zaiyi Liu,Meiyun Wang,Hairong Zheng,Shanshan Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:58: 101869-101869 被引量:52
标识
DOI:10.1016/j.bspc.2020.101869
摘要

Preoperative determination of the presence of LVSI plays an important role in guiding surgical planning. In this paper, multiparametric magnetic resonance imaging (MRI)-based radiomics and deep feature learning strategy was applied to both tumor and peritumor tissues for preoperative prediction of LVSI in early-stage cervical cancer. 111 training cohort patients (44 LVSI-positive and 67 LVSI-negative) and 56 validation cohort patients (23 LVSI-positive and 33 LVSI-negative) with T1CE and T2WI modalities were enrolled. Radiomics features were extracted from tumor tissues, and peri-tumor tissues with different radial dilation distances outside tumor. The VGG-19 was used to extract high-level deep features. Support Vector Machine (SVM) models were constructed based on the radiomic and deep features extracted from multiparametric MRI. Models performance was evaluated on the validation cohort. Features extracted from tumor tissue with 8 mm and 4 mm radial dilation distances outside tumor show best discriminative performance for T1CE and T2WI respectively. For the final model construction, five radiomics features and three deep learning features were selected. The final model showed the best prediction results, with an AUC of 0.842 (95% confidence interval [CI], 0.772–0.913) in the training cohort and 0.775 (95% CI, 0.637–0.912) in the validation cohort. The sensitivity and specificity were 0.773 and 0.776 in the training cohort and 0.739 and 0.667 in the validation cohort. Taking into consideration of the features of peritumor tissues can contribute to improving LVSI prediction performance. The radiomics and deep learning fusion strategy shows the potential in prediction of LVSI in early-stage cervical cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助细心秀发采纳,获得10
1秒前
1秒前
bxl完成签到,获得积分10
1秒前
WW完成签到 ,获得积分10
1秒前
xixi发布了新的文献求助10
1秒前
up完成签到,获得积分10
1秒前
Sun_Chen完成签到,获得积分10
1秒前
斯文败类应助_蝴蝶小姐采纳,获得10
1秒前
ocean完成签到,获得积分10
1秒前
爱笑的蘑菇完成签到,获得积分10
2秒前
zero完成签到,获得积分20
2秒前
深情安青应助柴犬采纳,获得10
2秒前
2秒前
在水一方应助丁柯晗采纳,获得10
2秒前
ailyna完成签到,获得积分10
3秒前
学习鱼完成签到,获得积分10
3秒前
3秒前
3秒前
刻刻完成签到,获得积分10
4秒前
123完成签到,获得积分10
5秒前
5秒前
SciGPT应助Kaysen92采纳,获得10
6秒前
细心秀发完成签到,获得积分10
6秒前
我花开后百花杀完成签到,获得积分10
7秒前
陈艳林发布了新的文献求助10
7秒前
8秒前
rivvvvvver完成签到,获得积分10
8秒前
lq完成签到,获得积分10
8秒前
tbdxby完成签到 ,获得积分10
8秒前
研究啥完成签到,获得积分10
9秒前
9秒前
顾矜应助123123采纳,获得10
9秒前
shangqinwang发布了新的文献求助10
9秒前
Desire发布了新的文献求助10
10秒前
zoey发布了新的文献求助30
10秒前
邓谷云完成签到,获得积分10
10秒前
山山完成签到 ,获得积分10
10秒前
12秒前
jignjing发布了新的文献求助10
12秒前
xixi完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571570
求助须知:如何正确求助?哪些是违规求助? 3992686
关于积分的说明 12358989
捐赠科研通 3665670
什么是DOI,文献DOI怎么找? 2020248
邀请新用户注册赠送积分活动 1054513
科研通“疑难数据库(出版商)”最低求助积分说明 942077