亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lymph-vascular space invasion prediction in cervical cancer: Exploring radiomics and deep learning multilevel features of tumor and peritumor tissue on multiparametric MRI

医学 队列 无线电技术 计算机科学 深度学习 放射科 人工智能 磁共振成像 病理
作者
Wenqing Hua,Taohui Xiao,Xiran Jiang,Zaiyi Liu,Meiyun Wang,Hairong Zheng,Shanshan Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:58: 101869-101869 被引量:49
标识
DOI:10.1016/j.bspc.2020.101869
摘要

Preoperative determination of the presence of LVSI plays an important role in guiding surgical planning. In this paper, multiparametric magnetic resonance imaging (MRI)-based radiomics and deep feature learning strategy was applied to both tumor and peritumor tissues for preoperative prediction of LVSI in early-stage cervical cancer. 111 training cohort patients (44 LVSI-positive and 67 LVSI-negative) and 56 validation cohort patients (23 LVSI-positive and 33 LVSI-negative) with T1CE and T2WI modalities were enrolled. Radiomics features were extracted from tumor tissues, and peri-tumor tissues with different radial dilation distances outside tumor. The VGG-19 was used to extract high-level deep features. Support Vector Machine (SVM) models were constructed based on the radiomic and deep features extracted from multiparametric MRI. Models performance was evaluated on the validation cohort. Features extracted from tumor tissue with 8 mm and 4 mm radial dilation distances outside tumor show best discriminative performance for T1CE and T2WI respectively. For the final model construction, five radiomics features and three deep learning features were selected. The final model showed the best prediction results, with an AUC of 0.842 (95% confidence interval [CI], 0.772–0.913) in the training cohort and 0.775 (95% CI, 0.637–0.912) in the validation cohort. The sensitivity and specificity were 0.773 and 0.776 in the training cohort and 0.739 and 0.667 in the validation cohort. Taking into consideration of the features of peritumor tissues can contribute to improving LVSI prediction performance. The radiomics and deep learning fusion strategy shows the potential in prediction of LVSI in early-stage cervical cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助白樱恋曲采纳,获得10
10秒前
14秒前
拼搏萝完成签到,获得积分10
17秒前
20秒前
张怡博完成签到 ,获得积分10
21秒前
Lucas应助jacs111采纳,获得10
27秒前
张子烜完成签到,获得积分10
32秒前
34秒前
jacs111发布了新的文献求助10
39秒前
1分钟前
李李发布了新的文献求助10
1分钟前
TZ完成签到 ,获得积分10
1分钟前
Dritsw应助李李采纳,获得10
1分钟前
1分钟前
1分钟前
爱静静应助西门吹雪采纳,获得30
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Dritsw应助Maple采纳,获得10
1分钟前
郑雅茵发布了新的文献求助30
1分钟前
2分钟前
Tendency完成签到 ,获得积分10
2分钟前
郑雅茵完成签到 ,获得积分20
2分钟前
小张完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Dritsw应助LANER采纳,获得10
2分钟前
AAA发布了新的文献求助10
2分钟前
jacs111发布了新的文献求助10
2分钟前
小胖完成签到 ,获得积分10
3分钟前
多情的续完成签到,获得积分10
3分钟前
ktw完成签到,获得积分10
3分钟前
3分钟前
3分钟前
呆呆不呆Zz完成签到,获得积分10
3分钟前
令宏发布了新的文献求助30
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214