Lymph-vascular space invasion prediction in cervical cancer: Exploring radiomics and deep learning multilevel features of tumor and peritumor tissue on multiparametric MRI

医学 队列 无线电技术 计算机科学 深度学习 放射科 人工智能 磁共振成像 病理
作者
Wenqing Hua,Taohui Xiao,Xiran Jiang,Zaiyi Liu,Meiyun Wang,Hairong Zheng,Shanshan Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:58: 101869-101869 被引量:54
标识
DOI:10.1016/j.bspc.2020.101869
摘要

Preoperative determination of the presence of LVSI plays an important role in guiding surgical planning. In this paper, multiparametric magnetic resonance imaging (MRI)-based radiomics and deep feature learning strategy was applied to both tumor and peritumor tissues for preoperative prediction of LVSI in early-stage cervical cancer. 111 training cohort patients (44 LVSI-positive and 67 LVSI-negative) and 56 validation cohort patients (23 LVSI-positive and 33 LVSI-negative) with T1CE and T2WI modalities were enrolled. Radiomics features were extracted from tumor tissues, and peri-tumor tissues with different radial dilation distances outside tumor. The VGG-19 was used to extract high-level deep features. Support Vector Machine (SVM) models were constructed based on the radiomic and deep features extracted from multiparametric MRI. Models performance was evaluated on the validation cohort. Features extracted from tumor tissue with 8 mm and 4 mm radial dilation distances outside tumor show best discriminative performance for T1CE and T2WI respectively. For the final model construction, five radiomics features and three deep learning features were selected. The final model showed the best prediction results, with an AUC of 0.842 (95% confidence interval [CI], 0.772–0.913) in the training cohort and 0.775 (95% CI, 0.637–0.912) in the validation cohort. The sensitivity and specificity were 0.773 and 0.776 in the training cohort and 0.739 and 0.667 in the validation cohort. Taking into consideration of the features of peritumor tissues can contribute to improving LVSI prediction performance. The radiomics and deep learning fusion strategy shows the potential in prediction of LVSI in early-stage cervical cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qianqina发布了新的文献求助10
3秒前
托托完成签到,获得积分10
5秒前
丘比特应助果小镁采纳,获得10
5秒前
5秒前
dd发布了新的文献求助10
5秒前
科研通AI6应助行者无疆采纳,获得10
9秒前
Hipchengi发布了新的文献求助20
10秒前
10秒前
文静的蜗牛完成签到,获得积分10
12秒前
zh完成签到,获得积分10
14秒前
14秒前
15秒前
果小镁发布了新的文献求助10
16秒前
共享精神应助吕亦寒采纳,获得10
16秒前
斯文败类应助认真的思枫采纳,获得10
17秒前
Jodie发布了新的文献求助10
17秒前
20秒前
彼岸花开发布了新的文献求助10
20秒前
123456发布了新的文献求助10
20秒前
万能图书馆应助张姚采纳,获得10
22秒前
KYTQQ完成签到 ,获得积分10
22秒前
赘婿应助Shubin828采纳,获得10
26秒前
脑洞疼应助蓝色的梦采纳,获得10
26秒前
27秒前
wuya完成签到,获得积分10
27秒前
汝桢完成签到 ,获得积分10
27秒前
wx发布了新的文献求助30
29秒前
30秒前
30秒前
沉默的易烟完成签到,获得积分10
31秒前
慈祥的丹寒完成签到 ,获得积分10
31秒前
素颜发布了新的文献求助10
32秒前
cyclone发布了新的文献求助10
32秒前
科研通AI6应助liar采纳,获得10
33秒前
假装有昵称完成签到 ,获得积分10
33秒前
科研通AI6应助yyanxuemin919采纳,获得10
34秒前
lindoudou完成签到,获得积分10
35秒前
科研通AI6应助cyclone采纳,获得10
35秒前
无头骑士发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645296
关于积分的说明 14674744
捐赠科研通 4586398
什么是DOI,文献DOI怎么找? 2516422
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870