Lymph-vascular space invasion prediction in cervical cancer: Exploring radiomics and deep learning multilevel features of tumor and peritumor tissue on multiparametric MRI

医学 队列 无线电技术 计算机科学 深度学习 放射科 人工智能 磁共振成像 内科学
作者
Wenqing Hua,Taohui Xiao,Xiran Jiang,Zaiyi Liu,Meiyun Wang,Hairong Zheng,Shanshan Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:58: 101869-101869 被引量:48
标识
DOI:10.1016/j.bspc.2020.101869
摘要

Preoperative determination of the presence of LVSI plays an important role in guiding surgical planning. In this paper, multiparametric magnetic resonance imaging (MRI)-based radiomics and deep feature learning strategy was applied to both tumor and peritumor tissues for preoperative prediction of LVSI in early-stage cervical cancer. 111 training cohort patients (44 LVSI-positive and 67 LVSI-negative) and 56 validation cohort patients (23 LVSI-positive and 33 LVSI-negative) with T1CE and T2WI modalities were enrolled. Radiomics features were extracted from tumor tissues, and peri-tumor tissues with different radial dilation distances outside tumor. The VGG-19 was used to extract high-level deep features. Support Vector Machine (SVM) models were constructed based on the radiomic and deep features extracted from multiparametric MRI. Models performance was evaluated on the validation cohort. Features extracted from tumor tissue with 8 mm and 4 mm radial dilation distances outside tumor show best discriminative performance for T1CE and T2WI respectively. For the final model construction, five radiomics features and three deep learning features were selected. The final model showed the best prediction results, with an AUC of 0.842 (95% confidence interval [CI], 0.772–0.913) in the training cohort and 0.775 (95% CI, 0.637–0.912) in the validation cohort. The sensitivity and specificity were 0.773 and 0.776 in the training cohort and 0.739 and 0.667 in the validation cohort. Taking into consideration of the features of peritumor tissues can contribute to improving LVSI prediction performance. The radiomics and deep learning fusion strategy shows the potential in prediction of LVSI in early-stage cervical cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
假萌完成签到,获得积分10
刚刚
寒冷的浩轩完成签到,获得积分10
刚刚
z'x完成签到,获得积分10
1秒前
1秒前
1秒前
听爽了回复666完成签到,获得积分10
1秒前
LL完成签到,获得积分10
1秒前
橘子汽水发布了新的文献求助10
2秒前
严念桃完成签到,获得积分10
2秒前
2秒前
zzq完成签到,获得积分20
2秒前
Jasper应助攒一口袋星星采纳,获得10
2秒前
陈嘻嘻嘻嘻完成签到,获得积分10
2秒前
WWW完成签到,获得积分10
2秒前
无心的访蕊完成签到,获得积分10
3秒前
Megan发布了新的文献求助10
3秒前
烟花应助北栀采纳,获得10
3秒前
良口三三发布了新的文献求助10
4秒前
Apple完成签到,获得积分10
4秒前
Zed完成签到,获得积分20
4秒前
科研通AI2S应助赵子轩采纳,获得10
5秒前
yxy999完成签到,获得积分10
5秒前
眼睛大如天完成签到,获得积分10
5秒前
AATRAHASIS完成签到,获得积分10
6秒前
优秀的蜗牛完成签到,获得积分10
6秒前
Zed发布了新的文献求助10
6秒前
天真幻珊完成签到 ,获得积分10
7秒前
科研通AI2S应助清脆松采纳,获得10
8秒前
科研完成签到,获得积分10
9秒前
9秒前
9秒前
共享精神应助ruthyzz采纳,获得20
9秒前
橘子完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
遇见完成签到,获得积分10
12秒前
华青ww发布了新的文献求助30
12秒前
研友_LOr058完成签到,获得积分10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155405
求助须知:如何正确求助?哪些是违规求助? 2806429
关于积分的说明 7869269
捐赠科研通 2464791
什么是DOI,文献DOI怎么找? 1311942
科研通“疑难数据库(出版商)”最低求助积分说明 629783
版权声明 601880