Canopy segmentation and wire reconstruction for kiwifruit robotic harvesting

像素 人工智能 分割 交叉口(航空) 花萼 计算机视觉 机器人 霍夫变换 过程(计算) 计算机科学 数学 图像(数学) 工程类 园艺 航空航天工程 生物 操作系统
作者
Zhenzhen Song,Zhongxian Zhou,Wenqi Wang,Feng Gao,Longsheng Fu,Rui Li,Yongjie Cui
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:181: 105933-105933 被引量:39
标识
DOI:10.1016/j.compag.2020.105933
摘要

Kiwifruits are commercially grown on sturdy support structures such as T-bars and pergolas. Wires are widely used in modern agriculture as an important material for supporting T-bars. It may lead to damage to kiwifruit harvesting end-effector or robot when accessing fruits occluded by branches or wires. Additional development to segment calyxes, branches, and wires will help to achieve higher-level picking strategies. DeepLabV3+ was adopted to segment the fruit calyx, branch, and wire in this work. A method of discrete wire pixels reconstruction was then developed on Progressive probabilistic Hough transform (PPHT) to help sense distribution of the wire. Lines that didn’t meet the constraints, i.e., angle or distance between the lines, were regarded as noise and eliminated. There were 327 images divided into training (261) and testing (66) sets, where the training set was augmented to 1566 images. The dataset was heavily imbalanced where the pixels of calyx, branch, and wire were much fewer than background pixels. For the imbalanced kiwifruit canopy image segmentation, it was proven that the uniform weights assignation method outperformed the median frequency weights. In terms of backbone, ResNet-101 achieved IoUs (intersection over union) of 0.686, 0.709, and 0.424 for calyx, branch, and wire, respectively, and the highest mIoU (mean IoU) of 0.694. It took about 210.0 ms to process a resolution of 512 × 341 pixels image, which could be acceptable for the kiwifruit harvesting robot. The PPHT achieved an correct detection rate of 92.4%, and was competitive in processing time of 6.4 ms/image. Canopy image segmentation can provide a basis for guiding the harvesting end-effector to pick kiwifruits safely, thus improving the harvesting success rate and reducing on-orchard costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
youwenjing11发布了新的文献求助10
刚刚
山谷完成签到 ,获得积分10
刚刚
钱宇成发布了新的文献求助10
1秒前
科研通AI2S应助感动黄豆采纳,获得10
5秒前
9秒前
10秒前
13秒前
Fengliguantou发布了新的文献求助10
13秒前
猪猪hero发布了新的文献求助10
15秒前
Winner发布了新的文献求助10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得30
18秒前
18秒前
圆锥香蕉应助科研通管家采纳,获得20
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
19秒前
19秒前
感动黄豆发布了新的文献求助10
19秒前
22秒前
搞怪冷风完成签到,获得积分10
23秒前
lucky完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
26秒前
科目三应助战斗暴龙兽采纳,获得10
30秒前
30秒前
30秒前
31秒前
31秒前
34秒前
故意的靳发布了新的文献求助50
35秒前
111111完成签到,获得积分10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105