Canopy segmentation and wire reconstruction for kiwifruit robotic harvesting

像素 人工智能 分割 交叉口(航空) 花萼 计算机视觉 机器人 霍夫变换 过程(计算) 计算机科学 数学 图像(数学) 工程类 园艺 航空航天工程 生物 操作系统
作者
Zhenzhen Song,Zhongxian Zhou,Wenqi Wang,Feng Gao,Longsheng Fu,Rui Li,Yongjie Cui
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:181: 105933-105933 被引量:39
标识
DOI:10.1016/j.compag.2020.105933
摘要

Kiwifruits are commercially grown on sturdy support structures such as T-bars and pergolas. Wires are widely used in modern agriculture as an important material for supporting T-bars. It may lead to damage to kiwifruit harvesting end-effector or robot when accessing fruits occluded by branches or wires. Additional development to segment calyxes, branches, and wires will help to achieve higher-level picking strategies. DeepLabV3+ was adopted to segment the fruit calyx, branch, and wire in this work. A method of discrete wire pixels reconstruction was then developed on Progressive probabilistic Hough transform (PPHT) to help sense distribution of the wire. Lines that didn’t meet the constraints, i.e., angle or distance between the lines, were regarded as noise and eliminated. There were 327 images divided into training (261) and testing (66) sets, where the training set was augmented to 1566 images. The dataset was heavily imbalanced where the pixels of calyx, branch, and wire were much fewer than background pixels. For the imbalanced kiwifruit canopy image segmentation, it was proven that the uniform weights assignation method outperformed the median frequency weights. In terms of backbone, ResNet-101 achieved IoUs (intersection over union) of 0.686, 0.709, and 0.424 for calyx, branch, and wire, respectively, and the highest mIoU (mean IoU) of 0.694. It took about 210.0 ms to process a resolution of 512 × 341 pixels image, which could be acceptable for the kiwifruit harvesting robot. The PPHT achieved an correct detection rate of 92.4%, and was competitive in processing time of 6.4 ms/image. Canopy image segmentation can provide a basis for guiding the harvesting end-effector to pick kiwifruits safely, thus improving the harvesting success rate and reducing on-orchard costs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉小笼包完成签到 ,获得积分10
刚刚
刚刚
小包子发布了新的文献求助20
刚刚
自由的夜天完成签到,获得积分20
1秒前
duoduo发布了新的文献求助10
2秒前
2秒前
JHK发布了新的文献求助10
2秒前
23333完成签到,获得积分10
2秒前
Liens发布了新的文献求助10
2秒前
Honahlee发布了新的文献求助10
3秒前
3秒前
HUANG_黄完成签到,获得积分10
3秒前
SS发布了新的文献求助30
3秒前
娇气的妙之完成签到,获得积分10
4秒前
NexusExplorer应助JY采纳,获得10
4秒前
李蕤蕤完成签到,获得积分10
4秒前
5秒前
5秒前
Lucas应助虎啊虎啊采纳,获得10
5秒前
5秒前
5秒前
glacierflame完成签到,获得积分10
6秒前
Morli完成签到,获得积分20
6秒前
呼呼大睡完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
somous发布了新的文献求助10
7秒前
ji驳回了ccm应助
7秒前
7秒前
7秒前
一期一会完成签到,获得积分10
7秒前
7秒前
哈尼发布了新的文献求助100
7秒前
8秒前
8秒前
zhonglv7应助彭静琳采纳,获得10
9秒前
大个应助彭静琳采纳,获得10
9秒前
传奇3应助专一的滑板采纳,获得10
9秒前
番茄鱼完成签到,获得积分10
9秒前
刘御宸完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836