Towards Effective Music Therapy for Mental Health Care Using Machine Learning Tools: Human Affective Reasoning and Music Genres

计算机科学 卷积神经网络 集合(抽象数据类型) 人工智能 音乐疗法 情感计算 动画 语音识别 机器学习 心理学 计算机图形学(图像) 心理治疗师 程序设计语言
作者
Jessica Sharmin Rahman,Tom Gedeon,Sabrina Caldwell,Richard Jones,Zi Jin
出处
期刊:Journal of Artificial Intelligence and Soft Computing Research [Polish Neural Network Society, the University of Social Sciences in Lodz & Czestochowa University of Technology]
卷期号:11 (1): 5-20 被引量:40
标识
DOI:10.2478/jaiscr-2021-0001
摘要

Abstract Music has the ability to evoke different emotions in people, which is reflected in their physiological signals. Advances in affective computing have introduced computational methods to analyse these signals and understand the relationship between music and emotion in greater detail. We analyse Electrodermal Activity (EDA), Blood Volume Pulse (BVP), Skin Temperature (ST) and Pupil Dilation (PD) collected from 24 participants while they listen to 12 pieces from 3 different genres of music. A set of 34 features were extracted from each signal and 6 different feature selection methods were applied to identify useful features. Empirical analysis shows that a neural network (NN) with a set of features extracted from the physiological signals can achieve 99.2% accuracy in differentiating among the 3 music genres. The model also reaches 98.5% accuracy in classification based on participants’ subjective rating of emotion. The paper also identifies some useful features to improve accuracy of the classification models. Furthermore, we introduce a new technique called ’Gingerbread Animation’ to visualise the physiological signals we record as a video, and to make these signals more comprehensible to the human eye, and also appropriate for computer vision techniques such as Convolutional Neural Networks (CNNs). Our results overall provide a strong motivation to investigate the relationship between physiological signals and music, which can lead to improvements in music therapy for mental health care and musicogenic epilepsy reduction (our long term goal).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助伶俐皮卡丘采纳,获得10
刚刚
1秒前
量子星尘发布了新的文献求助100
1秒前
1秒前
竹子发布了新的文献求助10
1秒前
搜集达人应助Morois采纳,获得10
2秒前
2秒前
哆啦A涵发布了新的文献求助10
2秒前
Ava应助Mikey采纳,获得10
3秒前
3秒前
3秒前
077发布了新的文献求助10
3秒前
3秒前
己见发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
徐昊雯发布了新的文献求助10
4秒前
4秒前
5秒前
123发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
mai完成签到,获得积分20
6秒前
AJY发布了新的文献求助10
6秒前
zuhayr发布了新的文献求助10
6秒前
7秒前
苗逍遥完成签到,获得积分20
7秒前
希望天下0贩的0应助zxzb采纳,获得10
7秒前
970465242@qq.com完成签到,获得积分10
7秒前
7秒前
xss关闭了xss文献求助
7秒前
7秒前
缘木完成签到,获得积分20
7秒前
8秒前
赘婿应助糟糕的大白菜采纳,获得10
8秒前
8秒前
8秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437