Towards Effective Music Therapy for Mental Health Care Using Machine Learning Tools: Human Affective Reasoning and Music Genres

计算机科学 卷积神经网络 集合(抽象数据类型) 人工智能 音乐疗法 情感计算 动画 语音识别 机器学习 心理学 计算机图形学(图像) 心理治疗师 程序设计语言
作者
Jessica Sharmin Rahman,Tom Gedeon,Sabrina Caldwell,Richard Jones,Zi Jin
出处
期刊:Journal of Artificial Intelligence and Soft Computing Research [Polish Neural Network Society, the University of Social Sciences in Lodz & Czestochowa University of Technology]
卷期号:11 (1): 5-20 被引量:40
标识
DOI:10.2478/jaiscr-2021-0001
摘要

Abstract Music has the ability to evoke different emotions in people, which is reflected in their physiological signals. Advances in affective computing have introduced computational methods to analyse these signals and understand the relationship between music and emotion in greater detail. We analyse Electrodermal Activity (EDA), Blood Volume Pulse (BVP), Skin Temperature (ST) and Pupil Dilation (PD) collected from 24 participants while they listen to 12 pieces from 3 different genres of music. A set of 34 features were extracted from each signal and 6 different feature selection methods were applied to identify useful features. Empirical analysis shows that a neural network (NN) with a set of features extracted from the physiological signals can achieve 99.2% accuracy in differentiating among the 3 music genres. The model also reaches 98.5% accuracy in classification based on participants’ subjective rating of emotion. The paper also identifies some useful features to improve accuracy of the classification models. Furthermore, we introduce a new technique called ’Gingerbread Animation’ to visualise the physiological signals we record as a video, and to make these signals more comprehensible to the human eye, and also appropriate for computer vision techniques such as Convolutional Neural Networks (CNNs). Our results overall provide a strong motivation to investigate the relationship between physiological signals and music, which can lead to improvements in music therapy for mental health care and musicogenic epilepsy reduction (our long term goal).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
学者宫Sir发布了新的文献求助10
1秒前
打打应助石昊采纳,获得10
2秒前
奥斯卡完成签到,获得积分10
3秒前
桐桐应助漂亮的雁露采纳,获得10
3秒前
糖炒栗子发布了新的文献求助10
4秒前
端庄的蜜粉完成签到,获得积分10
4秒前
5秒前
upsoar发布了新的文献求助10
5秒前
TL发布了新的文献求助10
6秒前
碧蓝白玉完成签到,获得积分10
6秒前
风趣从露完成签到,获得积分10
7秒前
玉龙月完成签到,获得积分10
7秒前
852应助beifa采纳,获得10
7秒前
Ay关注了科研通微信公众号
8秒前
LSL丶完成签到,获得积分0
9秒前
完美世界应助玉龙月采纳,获得10
10秒前
初色完成签到,获得积分10
10秒前
SYLH应助跳跃的访琴采纳,获得10
12秒前
Grayson发布了新的文献求助10
13秒前
14秒前
一路有你完成签到 ,获得积分10
15秒前
chris发布了新的文献求助10
16秒前
17秒前
18秒前
苏烟完成签到 ,获得积分10
18秒前
19秒前
19秒前
19秒前
SW冒险家完成签到 ,获得积分10
20秒前
曾经的臻完成签到,获得积分10
20秒前
20秒前
苏silence发布了新的文献求助10
20秒前
852应助aa采纳,获得10
21秒前
21秒前
22秒前
摆烂小子发布了新的文献求助10
23秒前
24秒前
完美世界应助甜美冰旋采纳,获得10
24秒前
zhongjiaweiv发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967654
求助须知:如何正确求助?哪些是违规求助? 3512812
关于积分的说明 11165110
捐赠科研通 3247884
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528