Towards Effective Music Therapy for Mental Health Care Using Machine Learning Tools: Human Affective Reasoning and Music Genres

计算机科学 卷积神经网络 集合(抽象数据类型) 人工智能 音乐疗法 情感计算 动画 语音识别 机器学习 心理学 计算机图形学(图像) 心理治疗师 程序设计语言
作者
Jessica Sharmin Rahman,Tom Gedeon,Sabrina Caldwell,Richard Jones,Zi Jin
出处
期刊:Journal of Artificial Intelligence and Soft Computing Research [De Gruyter]
卷期号:11 (1): 5-20 被引量:40
标识
DOI:10.2478/jaiscr-2021-0001
摘要

Abstract Music has the ability to evoke different emotions in people, which is reflected in their physiological signals. Advances in affective computing have introduced computational methods to analyse these signals and understand the relationship between music and emotion in greater detail. We analyse Electrodermal Activity (EDA), Blood Volume Pulse (BVP), Skin Temperature (ST) and Pupil Dilation (PD) collected from 24 participants while they listen to 12 pieces from 3 different genres of music. A set of 34 features were extracted from each signal and 6 different feature selection methods were applied to identify useful features. Empirical analysis shows that a neural network (NN) with a set of features extracted from the physiological signals can achieve 99.2% accuracy in differentiating among the 3 music genres. The model also reaches 98.5% accuracy in classification based on participants’ subjective rating of emotion. The paper also identifies some useful features to improve accuracy of the classification models. Furthermore, we introduce a new technique called ’Gingerbread Animation’ to visualise the physiological signals we record as a video, and to make these signals more comprehensible to the human eye, and also appropriate for computer vision techniques such as Convolutional Neural Networks (CNNs). Our results overall provide a strong motivation to investigate the relationship between physiological signals and music, which can lead to improvements in music therapy for mental health care and musicogenic epilepsy reduction (our long term goal).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhanlonglsj发布了新的文献求助10
1秒前
1秒前
芍药完成签到,获得积分10
1秒前
Yogita完成签到,获得积分10
2秒前
DoctorYan完成签到,获得积分10
2秒前
Adler完成签到,获得积分10
2秒前
3秒前
坐宝马吃地瓜完成签到 ,获得积分10
3秒前
SciGPT应助Strike采纳,获得10
3秒前
自强不息完成签到,获得积分10
3秒前
4秒前
czq发布了新的文献求助30
4秒前
望春风完成签到,获得积分10
4秒前
4秒前
huangJP完成签到,获得积分10
5秒前
情怀应助Tira采纳,获得10
5秒前
王阳洋完成签到,获得积分10
5秒前
5秒前
6秒前
通~发布了新的文献求助10
6秒前
李爱国应助非常可爱采纳,获得20
6秒前
6秒前
7秒前
阿敏发布了新的文献求助10
8秒前
JamesPei应助小憩采纳,获得10
8秒前
jkhjkhj发布了新的文献求助10
8秒前
风中香之发布了新的文献求助30
8秒前
忍冬完成签到,获得积分10
9秒前
Zhong发布了新的文献求助10
10秒前
胡图图关注了科研通微信公众号
10秒前
爱吃泡芙发布了新的文献求助20
10秒前
xiuxiu_27发布了新的文献求助10
10秒前
小书包完成签到,获得积分10
11秒前
xxx发布了新的文献求助10
11秒前
直率的钢铁侠完成签到,获得积分10
11秒前
大模型应助Elaine采纳,获得10
12秒前
花痴的骁完成签到 ,获得积分10
12秒前
F冯发布了新的文献求助10
13秒前
干卿完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740