Towards Effective Music Therapy for Mental Health Care Using Machine Learning Tools: Human Affective Reasoning and Music Genres

计算机科学 卷积神经网络 集合(抽象数据类型) 人工智能 音乐疗法 情感计算 动画 语音识别 机器学习 心理学 计算机图形学(图像) 程序设计语言 心理治疗师
作者
Jessica Sharmin Rahman,Tom Gedeon,Sabrina Caldwell,Richard Jones,Zi Jin
出处
期刊:Journal of Artificial Intelligence and Soft Computing Research [De Gruyter]
卷期号:11 (1): 5-20 被引量:40
标识
DOI:10.2478/jaiscr-2021-0001
摘要

Abstract Music has the ability to evoke different emotions in people, which is reflected in their physiological signals. Advances in affective computing have introduced computational methods to analyse these signals and understand the relationship between music and emotion in greater detail. We analyse Electrodermal Activity (EDA), Blood Volume Pulse (BVP), Skin Temperature (ST) and Pupil Dilation (PD) collected from 24 participants while they listen to 12 pieces from 3 different genres of music. A set of 34 features were extracted from each signal and 6 different feature selection methods were applied to identify useful features. Empirical analysis shows that a neural network (NN) with a set of features extracted from the physiological signals can achieve 99.2% accuracy in differentiating among the 3 music genres. The model also reaches 98.5% accuracy in classification based on participants’ subjective rating of emotion. The paper also identifies some useful features to improve accuracy of the classification models. Furthermore, we introduce a new technique called ’Gingerbread Animation’ to visualise the physiological signals we record as a video, and to make these signals more comprehensible to the human eye, and also appropriate for computer vision techniques such as Convolutional Neural Networks (CNNs). Our results overall provide a strong motivation to investigate the relationship between physiological signals and music, which can lead to improvements in music therapy for mental health care and musicogenic epilepsy reduction (our long term goal).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abel发布了新的文献求助10
1秒前
林厌寻发布了新的文献求助10
1秒前
麻薯发布了新的文献求助10
1秒前
2秒前
随便发布了新的文献求助10
3秒前
keing完成签到,获得积分10
3秒前
3秒前
二队淼队长完成签到,获得积分10
4秒前
NexusExplorer应助科学家采纳,获得10
4秒前
日耳曼战车完成签到,获得积分10
4秒前
5秒前
5秒前
7秒前
馒头发布了新的文献求助10
7秒前
8秒前
8秒前
大模型应助Zurich采纳,获得10
9秒前
9秒前
美有姬完成签到,获得积分10
9秒前
10秒前
明亮的卿完成签到,获得积分20
10秒前
xiaoran完成签到,获得积分10
11秒前
Blank完成签到 ,获得积分10
11秒前
LINA JIAO发布了新的文献求助10
11秒前
无名之辈发布了新的文献求助10
12秒前
yy完成签到,获得积分10
15秒前
15秒前
香蕉觅云应助tanjuan采纳,获得10
17秒前
啊哈关注了科研通微信公众号
17秒前
李健应助abel采纳,获得10
17秒前
18秒前
风趣的含烟完成签到 ,获得积分10
19秒前
19秒前
彬彬哥发布了新的文献求助10
20秒前
20秒前
21秒前
mym发布了新的文献求助10
22秒前
23秒前
LINA JIAO完成签到,获得积分10
24秒前
orixero应助keing采纳,获得10
25秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170879
求助须知:如何正确求助?哪些是违规求助? 2821852
关于积分的说明 7936730
捐赠科研通 2482297
什么是DOI,文献DOI怎么找? 1322448
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602608