Emissive spin-0 triplet-pairs are a direct product of triplet–triplet annihilation in pentacene single crystals and anthradithiophene films

并五苯 单重态裂变 化学 单重态 三重态 消灭 自旋(空气动力学) 光致发光 光激发 四烯 亚辛 产品(数学) 有机半导体 磷光 光电子学 光化学 化学物理 原子物理学 材料科学 激发态 荧光 物理 物理化学 分子 核物理学 光学 量子力学 有机化学 热力学 薄膜晶体管 电极
作者
David G. Bossanyi,Maik Matthiesen,Shuangqing Wang,Joel A. Smith,Rachel C. Kilbride,James D. Shipp,Dimitri Chekulaev,Emma Holland,John E. Anthony,Jana Zaumseil,Andrew J. Musser,Jenny Clark
出处
期刊:Nature Chemistry [Nature Portfolio]
卷期号:13 (2): 163-171 被引量:43
标识
DOI:10.1038/s41557-020-00593-y
摘要

Singlet fission and triplet–triplet annihilation represent two highly promising ways of increasing the efficiency of photovoltaic devices. Both processes are believed to be mediated by a biexcitonic triplet-pair state, 1(TT). Recently however, there has been debate over the role of 1(TT) in triplet–triplet annihilation. Here we use intensity-dependent, low-temperature photoluminescence measurements, combined with kinetic modelling, to show that distinct 1(TT) emission arises directly from triplet–triplet annihilation in high-quality pentacene single crystals and anthradithiophene (diF-TES-ADT) thin films. This work demonstrates that a real, emissive triplet-pair state acts as an intermediate in both singlet fission and triplet–triplet annihilation and that this is true for both endo- and exothermic singlet fission materials. The role of the biexcitonic triplet-pair state 1(TT) during triplet–triplet annihilation events in singlet-fission materials has been the subject of recent debate. Now, emissive 1(TT) states have been shown to be direct products of triplet–triplet annihilation in both endothermic and exothermic singlet-fission materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
arui完成签到,获得积分10
1秒前
范炎炎完成签到,获得积分10
3秒前
3秒前
火星上的飞槐完成签到,获得积分10
3秒前
幸福胡萝卜完成签到,获得积分10
3秒前
Fighting完成签到,获得积分10
4秒前
焱鑫完成签到,获得积分10
4秒前
5秒前
小陈完成签到,获得积分10
5秒前
邓代容完成签到 ,获得积分10
6秒前
lzj001983完成签到,获得积分10
6秒前
red发布了新的文献求助10
6秒前
curtainai完成签到,获得积分10
7秒前
王迪迪完成签到,获得积分10
8秒前
lebron发布了新的文献求助10
8秒前
幽默白竹完成签到,获得积分20
8秒前
9秒前
X暴富完成签到,获得积分10
9秒前
杨馨蕊发布了新的文献求助10
9秒前
风趣安青完成签到 ,获得积分10
10秒前
lh完成签到 ,获得积分10
10秒前
mumu完成签到,获得积分10
10秒前
王迪迪发布了新的文献求助10
11秒前
来福萨克斯完成签到 ,获得积分10
12秒前
maee发布了新的文献求助10
12秒前
changping应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
wynne313完成签到 ,获得积分10
13秒前
共享精神应助科研通管家采纳,获得30
13秒前
思源应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213838
求助须知:如何正确求助?哪些是违规求助? 4389433
关于积分的说明 13667096
捐赠科研通 4250632
什么是DOI,文献DOI怎么找? 2332136
邀请新用户注册赠送积分活动 1329805
关于科研通互助平台的介绍 1283453