Logistic regression and machine learning predicted patient mortality from large sets of diagnosis codes comparably

布里氏评分 逻辑回归 医学 髋部骨折 置信区间 心肌梗塞 病历 诊断代码 统计 内科学 急诊医学 数学 人口 环境卫生 骨质疏松症
作者
Thomas E Cowling,David Cromwell,Alexis Bellot,Linda D. Sharples,Jan van der Meulen
出处
期刊:Journal of Clinical Epidemiology [Elsevier]
卷期号:133: 43-52 被引量:18
标识
DOI:10.1016/j.jclinepi.2020.12.018
摘要

Objective The objective of the study was to compare the performance of logistic regression and boosted trees for predicting patient mortality from large sets of diagnosis codes in electronic healthcare records. Study Design and Setting We analyzed national hospital records and official death records for patients with myocardial infarction (n = 200,119), hip fracture (n = 169,646), or colorectal cancer surgery (n = 56,515) in England in 2015–2017. One-year mortality was predicted from patient age, sex, and socioeconomic status, and 202 to 257 International Classification of Diseases 10th Revision codes recorded in the preceding year or not (binary predictors). Performance measures included the c-statistic, scaled Brier score, and several measures of calibration. Results One-year mortality was 17.2% (34,520) after myocardial infarction, 27.2% (46,115) after hip fracture, and 9.3% (5,273) after colorectal surgery. Optimism-adjusted c-statistics for the logistic regression models were 0.884 (95% confidence interval [CI]: 0.882, 0.886), 0.798 (0.796, 0.800), and 0.811 (0.805, 0.817). The equivalent c-statistics for the boosted tree models were 0.891 (95% CI: 0.889, 0.892), 0.804 (0.802, 0.806), and 0.803 (0.797, 0.809). Model performance was also similar when measured using scaled Brier scores. All models were well calibrated overall. Conclusion In large datasets of electronic healthcare records, logistic regression and boosted tree models of numerous diagnosis codes predicted patient mortality comparably.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助河中医朵花采纳,获得10
刚刚
Adara发布了新的文献求助10
刚刚
小二郎应助cui采纳,获得10
1秒前
CipherSage应助紫腚能行采纳,获得10
1秒前
3秒前
吃货葭完成签到,获得积分10
4秒前
4秒前
炒栗子完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
wyao完成签到,获得积分10
6秒前
杳杳完成签到 ,获得积分10
6秒前
田様应助聪慧松思采纳,获得10
6秒前
科研通AI2S应助Ttttt采纳,获得10
7秒前
7秒前
在逃蛋挞发布了新的文献求助30
8秒前
淡定雁开完成签到,获得积分10
8秒前
8秒前
AZX加油完成签到,获得积分10
8秒前
一只喵完成签到,获得积分10
9秒前
ke发布了新的文献求助10
10秒前
10秒前
CC完成签到,获得积分10
10秒前
刘英俊应助Mr.Jian采纳,获得10
11秒前
炒栗子发布了新的文献求助10
11秒前
思源应助xx采纳,获得10
11秒前
songlf23发布了新的文献求助10
11秒前
刘琪琪完成签到 ,获得积分10
12秒前
yyl发布了新的文献求助10
12秒前
自建完成签到,获得积分10
12秒前
Silence发布了新的文献求助10
12秒前
13秒前
edddyor完成签到,获得积分10
13秒前
韩老慢发布了新的文献求助10
13秒前
14秒前
Chen发布了新的文献求助10
14秒前
15秒前
中科院饲养员完成签到,获得积分10
15秒前
领导范儿应助WCM采纳,获得10
15秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3216192
求助须知:如何正确求助?哪些是违规求助? 2865141
关于积分的说明 8146793
捐赠科研通 2531568
什么是DOI,文献DOI怎么找? 1365288
科研通“疑难数据库(出版商)”最低求助积分说明 644426
邀请新用户注册赠送积分活动 617155