作者
Thomas E Cowling,David Cromwell,Alexis Bellot,Linda D. Sharples,Jan van der Meulen
摘要
Objective The objective of the study was to compare the performance of logistic regression and boosted trees for predicting patient mortality from large sets of diagnosis codes in electronic healthcare records. Study Design and Setting We analyzed national hospital records and official death records for patients with myocardial infarction (n = 200,119), hip fracture (n = 169,646), or colorectal cancer surgery (n = 56,515) in England in 2015–2017. One-year mortality was predicted from patient age, sex, and socioeconomic status, and 202 to 257 International Classification of Diseases 10th Revision codes recorded in the preceding year or not (binary predictors). Performance measures included the c-statistic, scaled Brier score, and several measures of calibration. Results One-year mortality was 17.2% (34,520) after myocardial infarction, 27.2% (46,115) after hip fracture, and 9.3% (5,273) after colorectal surgery. Optimism-adjusted c-statistics for the logistic regression models were 0.884 (95% confidence interval [CI]: 0.882, 0.886), 0.798 (0.796, 0.800), and 0.811 (0.805, 0.817). The equivalent c-statistics for the boosted tree models were 0.891 (95% CI: 0.889, 0.892), 0.804 (0.802, 0.806), and 0.803 (0.797, 0.809). Model performance was also similar when measured using scaled Brier scores. All models were well calibrated overall. Conclusion In large datasets of electronic healthcare records, logistic regression and boosted tree models of numerous diagnosis codes predicted patient mortality comparably.