Core-Shell Sn@Sioc Nanocomposite Synthesized Via Spray Pyrolysis for LIBs

阳极 材料科学 电解质 纳米复合材料 化学工程 电极 储能 石墨 纳米技术 复合材料 冶金 化学 物理化学 功率(物理) 工程类 物理 量子力学
作者
Sung Eun Wang,Min Ji Kim,Nam Yeong Jeong,Dae Soo Jung
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (68): 3457-3457
标识
DOI:10.1149/ma2020-02683457mtgabs
摘要

Lithium-ion batteries (LIBs) have become promising energy storage devices for the consumer electronics and electric vehicles due to their high energy and power density. Anode materials such as Si, Sn and Ge which are alloying with Li + ions have been attracted as alternatives to conventional graphite due to their very high theoretical capacities. Among the possible candidates, Sn has been thought to be a great anode material that shows high theoretical Li ion storage capacity of 994mAh g -1 and high electrical conductivity. However, the major drawback of tin based anode is their poor cycling stability because of large volme changes (260% for Li 22 Sn 5 ) during lithiation resulting in pulverization and loss of electrical contact within the electrode. Especially, the repetitive formation and rupture of solid electrolyte interface (SEI) layer continuously deplete the electrolyte. Nanocrystallization can effectively decrease the absolute volume change of every single particle and mitigated the strain improving the cycling stability of Sn anodes. However, preparation methods of nano-Sn have some negative factors, such as the high cost, complex process and reaggregation after cycling. In order to take full advantage of nano-Sn, many studies introduce suitable matrix. These matrix acts as a buffer agents and avoids side reactions by preventing the direct contact of Sn and electrolyte. The common one is carbon matrix works as a conducting medium and enhances the rate performance of electrode. Another one is active metals including Ge-Sn, Sb-Sn and Ag-Sn that can contribute to the overall capacity of the electrodes and long cycling life. Yet these comes with loss of charge storage capacity or large volume expansion. The quest for suitable matrix with high Li ion storage, low volume expansion and sufficient electronic conductivity is important. In this study, silicon oxycarbide (SiOC) was adapted for Sn based anodes. The SiOC consists of silica tetrahedral SiO 2 , SiOC glass phase and free carbon. This matrix features a high charge storage capacity (~800mAh g -1 ), low voulme expansion (~7%) and sufficient mechanical strength contributed by SiO 2 domains to accommodate the high volume expansion without capacity fading of Sn anode. In particular, the SiOC can suppress the aggreation of metallic Sn at high temperature remaining nano size. First, we obtained the Sn@SiOC nanocomposite with uniformly coated SiOC layer containing metallic Sn nanoparticle by spray pyrolysis and a subsequent carbonization process. The spray pyrolysis is scalable and facile method to synthesize various nanostructure functional materials via one-pot process. Also it can be easily scaled up for mass production. During the spray pyrolysis process, the tin(II) acetate and diphenylsilanediol (DPSD), the starting materials of Sn and SiOC, can be easily vaporized due to its low boiling point. The tin acetate nucleates first due to lower boiling point than DPSD and formates many clusters. Subsequently, DPSD vapors can be deposited onto the Sn clusters via aerosol assisted chemical vapor depsition (AACVD) mechanism. The deposited DPSD vapors lead to formation of coating layer by nucleation, growth and coagulation. Then, the spray pyrolyzed Sn@SiOC nanocomposite thermally treated at the inert atmosphere for growth of carbon network. This approach yields unifomly coated SiOC matrix with Sn nanoparticles of sizes on the order of 40-50nm. Anodes of the Sn@SiOC nanocomposite demonstrate high capacities and better stability against volume change during lithiation and delithiation cycling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小康完成签到,获得积分10
刚刚
3秒前
NexusExplorer应助XYCH采纳,获得10
4秒前
xxx发布了新的文献求助10
6秒前
7秒前
曲奇发布了新的文献求助10
7秒前
小迪迦奥特曼完成签到,获得积分10
8秒前
小康发布了新的文献求助10
8秒前
9秒前
心心哈完成签到 ,获得积分10
9秒前
deswin完成签到 ,获得积分10
10秒前
10秒前
12秒前
水色完成签到 ,获得积分10
13秒前
fmy发布了新的文献求助10
15秒前
15秒前
Shine完成签到 ,获得积分10
16秒前
CipherSage应助曲奇采纳,获得10
17秒前
ZZZ发布了新的文献求助10
18秒前
autumn发布了新的文献求助20
19秒前
量子星尘发布了新的文献求助10
21秒前
稳重代容发布了新的文献求助10
22秒前
23秒前
24秒前
25秒前
fmy完成签到,获得积分10
25秒前
最佳关注了科研通微信公众号
26秒前
28秒前
CodeCraft应助稳重代容采纳,获得10
30秒前
30秒前
Akim应助坦率的高烽采纳,获得10
31秒前
31秒前
一一完成签到,获得积分10
31秒前
乐乐应助超帅凡阳采纳,获得10
32秒前
33秒前
33秒前
荣耀发布了新的文献求助10
34秒前
复杂的之卉关注了科研通微信公众号
35秒前
zhang-leo发布了新的文献求助10
36秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163