Core-Shell Sn@Sioc Nanocomposite Synthesized Via Spray Pyrolysis for LIBs

阳极 材料科学 电解质 纳米复合材料 化学工程 电极 储能 石墨 纳米技术 复合材料 冶金 化学 物理化学 功率(物理) 工程类 物理 量子力学
作者
Sung Eun Wang,Min Ji Kim,Nam Yeong Jeong,Dae Soo Jung
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (68): 3457-3457
标识
DOI:10.1149/ma2020-02683457mtgabs
摘要

Lithium-ion batteries (LIBs) have become promising energy storage devices for the consumer electronics and electric vehicles due to their high energy and power density. Anode materials such as Si, Sn and Ge which are alloying with Li + ions have been attracted as alternatives to conventional graphite due to their very high theoretical capacities. Among the possible candidates, Sn has been thought to be a great anode material that shows high theoretical Li ion storage capacity of 994mAh g -1 and high electrical conductivity. However, the major drawback of tin based anode is their poor cycling stability because of large volme changes (260% for Li 22 Sn 5 ) during lithiation resulting in pulverization and loss of electrical contact within the electrode. Especially, the repetitive formation and rupture of solid electrolyte interface (SEI) layer continuously deplete the electrolyte. Nanocrystallization can effectively decrease the absolute volume change of every single particle and mitigated the strain improving the cycling stability of Sn anodes. However, preparation methods of nano-Sn have some negative factors, such as the high cost, complex process and reaggregation after cycling. In order to take full advantage of nano-Sn, many studies introduce suitable matrix. These matrix acts as a buffer agents and avoids side reactions by preventing the direct contact of Sn and electrolyte. The common one is carbon matrix works as a conducting medium and enhances the rate performance of electrode. Another one is active metals including Ge-Sn, Sb-Sn and Ag-Sn that can contribute to the overall capacity of the electrodes and long cycling life. Yet these comes with loss of charge storage capacity or large volume expansion. The quest for suitable matrix with high Li ion storage, low volume expansion and sufficient electronic conductivity is important. In this study, silicon oxycarbide (SiOC) was adapted for Sn based anodes. The SiOC consists of silica tetrahedral SiO 2 , SiOC glass phase and free carbon. This matrix features a high charge storage capacity (~800mAh g -1 ), low voulme expansion (~7%) and sufficient mechanical strength contributed by SiO 2 domains to accommodate the high volume expansion without capacity fading of Sn anode. In particular, the SiOC can suppress the aggreation of metallic Sn at high temperature remaining nano size. First, we obtained the Sn@SiOC nanocomposite with uniformly coated SiOC layer containing metallic Sn nanoparticle by spray pyrolysis and a subsequent carbonization process. The spray pyrolysis is scalable and facile method to synthesize various nanostructure functional materials via one-pot process. Also it can be easily scaled up for mass production. During the spray pyrolysis process, the tin(II) acetate and diphenylsilanediol (DPSD), the starting materials of Sn and SiOC, can be easily vaporized due to its low boiling point. The tin acetate nucleates first due to lower boiling point than DPSD and formates many clusters. Subsequently, DPSD vapors can be deposited onto the Sn clusters via aerosol assisted chemical vapor depsition (AACVD) mechanism. The deposited DPSD vapors lead to formation of coating layer by nucleation, growth and coagulation. Then, the spray pyrolyzed Sn@SiOC nanocomposite thermally treated at the inert atmosphere for growth of carbon network. This approach yields unifomly coated SiOC matrix with Sn nanoparticles of sizes on the order of 40-50nm. Anodes of the Sn@SiOC nanocomposite demonstrate high capacities and better stability against volume change during lithiation and delithiation cycling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
思源应助简单的沛凝采纳,获得10
2秒前
桐桐应助kk采纳,获得10
3秒前
Noel应助fagfagsf采纳,获得10
4秒前
5秒前
山野完成签到,获得积分10
5秒前
himsn完成签到,获得积分10
6秒前
一二完成签到 ,获得积分10
8秒前
微笑的千山完成签到 ,获得积分10
9秒前
10秒前
11秒前
上官若男应助amy采纳,获得10
11秒前
12秒前
fufufu123发布了新的文献求助10
14秒前
CJZ关闭了CJZ文献求助
15秒前
xy820完成签到,获得积分20
16秒前
zzzzz发布了新的文献求助10
17秒前
黄小鸟2333完成签到 ,获得积分20
18秒前
18秒前
谢谢sang发布了新的文献求助10
18秒前
Joyce完成签到,获得积分10
18秒前
xy820发布了新的文献求助30
19秒前
寒冷的土豆完成签到,获得积分10
19秒前
情怀应助桪玖采纳,获得30
19秒前
20秒前
21秒前
MQ&FF完成签到,获得积分0
21秒前
22秒前
huo发布了新的文献求助10
23秒前
只道寻常发布了新的文献求助10
23秒前
23秒前
HHD发布了新的文献求助10
24秒前
26秒前
...发布了新的文献求助30
27秒前
27秒前
茶色玻璃发布了新的文献求助10
27秒前
LBF发布了新的文献求助10
28秒前
28秒前
勤奋花瓣发布了新的文献求助10
29秒前
文静的绯完成签到,获得积分10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514599
求助须知:如何正确求助?哪些是违规求助? 3096989
关于积分的说明 9233427
捐赠科研通 2791987
什么是DOI,文献DOI怎么找? 1532191
邀请新用户注册赠送积分活动 711826
科研通“疑难数据库(出版商)”最低求助积分说明 707031