亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Core-Shell Sn@Sioc Nanocomposite Synthesized Via Spray Pyrolysis for LIBs

阳极 材料科学 电解质 纳米复合材料 化学工程 电极 储能 石墨 纳米技术 复合材料 冶金 化学 物理化学 功率(物理) 工程类 物理 量子力学
作者
Sung Eun Wang,Min Ji Kim,Nam Yeong Jeong,Dae Soo Jung
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (68): 3457-3457
标识
DOI:10.1149/ma2020-02683457mtgabs
摘要

Lithium-ion batteries (LIBs) have become promising energy storage devices for the consumer electronics and electric vehicles due to their high energy and power density. Anode materials such as Si, Sn and Ge which are alloying with Li + ions have been attracted as alternatives to conventional graphite due to their very high theoretical capacities. Among the possible candidates, Sn has been thought to be a great anode material that shows high theoretical Li ion storage capacity of 994mAh g -1 and high electrical conductivity. However, the major drawback of tin based anode is their poor cycling stability because of large volme changes (260% for Li 22 Sn 5 ) during lithiation resulting in pulverization and loss of electrical contact within the electrode. Especially, the repetitive formation and rupture of solid electrolyte interface (SEI) layer continuously deplete the electrolyte. Nanocrystallization can effectively decrease the absolute volume change of every single particle and mitigated the strain improving the cycling stability of Sn anodes. However, preparation methods of nano-Sn have some negative factors, such as the high cost, complex process and reaggregation after cycling. In order to take full advantage of nano-Sn, many studies introduce suitable matrix. These matrix acts as a buffer agents and avoids side reactions by preventing the direct contact of Sn and electrolyte. The common one is carbon matrix works as a conducting medium and enhances the rate performance of electrode. Another one is active metals including Ge-Sn, Sb-Sn and Ag-Sn that can contribute to the overall capacity of the electrodes and long cycling life. Yet these comes with loss of charge storage capacity or large volume expansion. The quest for suitable matrix with high Li ion storage, low volume expansion and sufficient electronic conductivity is important. In this study, silicon oxycarbide (SiOC) was adapted for Sn based anodes. The SiOC consists of silica tetrahedral SiO 2 , SiOC glass phase and free carbon. This matrix features a high charge storage capacity (~800mAh g -1 ), low voulme expansion (~7%) and sufficient mechanical strength contributed by SiO 2 domains to accommodate the high volume expansion without capacity fading of Sn anode. In particular, the SiOC can suppress the aggreation of metallic Sn at high temperature remaining nano size. First, we obtained the Sn@SiOC nanocomposite with uniformly coated SiOC layer containing metallic Sn nanoparticle by spray pyrolysis and a subsequent carbonization process. The spray pyrolysis is scalable and facile method to synthesize various nanostructure functional materials via one-pot process. Also it can be easily scaled up for mass production. During the spray pyrolysis process, the tin(II) acetate and diphenylsilanediol (DPSD), the starting materials of Sn and SiOC, can be easily vaporized due to its low boiling point. The tin acetate nucleates first due to lower boiling point than DPSD and formates many clusters. Subsequently, DPSD vapors can be deposited onto the Sn clusters via aerosol assisted chemical vapor depsition (AACVD) mechanism. The deposited DPSD vapors lead to formation of coating layer by nucleation, growth and coagulation. Then, the spray pyrolyzed Sn@SiOC nanocomposite thermally treated at the inert atmosphere for growth of carbon network. This approach yields unifomly coated SiOC matrix with Sn nanoparticles of sizes on the order of 40-50nm. Anodes of the Sn@SiOC nanocomposite demonstrate high capacities and better stability against volume change during lithiation and delithiation cycling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunfield2014发布了新的文献求助10
1秒前
35秒前
35秒前
gexzygg应助科研通管家采纳,获得10
36秒前
shhoing应助科研通管家采纳,获得10
36秒前
liuliuliu发布了新的文献求助10
39秒前
浮游应助liuliuliu采纳,获得10
46秒前
54秒前
power完成签到,获得积分10
1分钟前
1分钟前
at发布了新的文献求助10
1分钟前
万能图书馆应助at采纳,获得10
2分钟前
Pattis完成签到 ,获得积分10
2分钟前
2分钟前
阿俊发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
乐乐应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
慕青应助王波波早睡晚起采纳,获得10
2分钟前
3分钟前
土豪的灵竹完成签到 ,获得积分10
3分钟前
3分钟前
贺六浑发布了新的文献求助20
3分钟前
午盏完成签到 ,获得积分10
4分钟前
gexzygg应助科研通管家采纳,获得20
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
4分钟前
整齐的飞兰完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
xiaoxinbaba发布了新的文献求助10
5分钟前
达不溜搽发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561480
求助须知:如何正确求助?哪些是违规求助? 4646582
关于积分的说明 14678674
捐赠科研通 4587857
什么是DOI,文献DOI怎么找? 2517242
邀请新用户注册赠送积分活动 1490539
关于科研通互助平台的介绍 1461514