Deep learning for differentiation of benign and malignant solid liver lesions on ultrasonography

医学 肝病学 组织病理学 放射科 急诊分诊台 活检 超声波 超声科 诊断准确性 考试(生物学) 试验装置 病理 人工智能 内科学 计算机科学 急诊医学 古生物学 生物
作者
I. Xi,Jing Wu,Jing Guan,Paul J. Zhang,Steven C. Horii,Michael C. Soulen,Zishu Zhang,Harrison X. Bai
出处
期刊:Abdominal Imaging [Springer Nature]
卷期号:46 (2): 534-543 被引量:23
标识
DOI:10.1007/s00261-020-02564-w
摘要

The ability to reliably distinguish benign from malignant solid liver lesions on ultrasonography can increase access, decrease costs, and help to better triage patients for biopsy. In this study, we used deep learning to differentiate benign from malignant focal solid liver lesions based on their ultrasound appearance. Among the 596 patients who met the inclusion criteria, there were 911 images of individual liver lesions, of which 535 were malignant and 376 were benign. Our training set contained 660 lesions augmented dynamically during training for a total of 330,000 images; our test set contained 79 images. A neural network with ResNet50 architecture was fine-tuned using pre-trained weights on ImageNet. Non-cystic liver lesions with definite diagnosis by histopathology or MRI were included. Accuracy of the final model was compared with expert interpretation. Two separate datasets were used in training and evaluation, one with all lesions and one with lesions deemed to be of uncertain diagnosis based on the Code Abdomen rating system. Our model trained on the complete set of all lesions achieved a test accuracy of 0.84 (95% CI 0.74–0.90) compared to expert 1 with a test accuracy of 0.80 (95% CI 0.70–0.87) and expert 2 with a test accuracy of 0.73 (95% CI 0.63–0.82). Our model trained on the uncertain set of lesions achieved a test accuracy of 0.79 (95% CI 0.69–0.87) compared to expert 1 with a test accuracy of 0.70 (95% CI 0.59–0.78) and expert 2 with a test accuracy of 0.66 (95% CI 0.55–0.75). On the uncertain dataset, compared to all experts averaged, the model had higher test accuracy (0.79 vs. 0.68, p = 0.025). Deep learning algorithms proposed in the current study improve differentiation of benign from malignant ultrasound-captured solid liver lesions and perform comparably to expert radiologists. Deep learning tools can potentially be used to improve the accuracy and efficiency of clinical workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助皮老师采纳,获得10
3秒前
5秒前
风中的青完成签到,获得积分10
6秒前
BK1BK22发布了新的文献求助10
8秒前
LIU完成签到 ,获得积分10
8秒前
8秒前
材料若饥完成签到,获得积分10
10秒前
11秒前
Liangstar完成签到 ,获得积分10
11秒前
胡茶茶完成签到 ,获得积分10
11秒前
13秒前
xdlongchem完成签到,获得积分10
13秒前
林林发布了新的文献求助10
13秒前
14秒前
皮老师发布了新的文献求助10
15秒前
烟花应助细心寒凡采纳,获得10
15秒前
爱学习的李霞完成签到,获得积分10
15秒前
11111发布了新的文献求助10
18秒前
泡泡汽水发布了新的文献求助10
20秒前
飞快的雨寒关注了科研通微信公众号
20秒前
3263255发布了新的文献求助10
23秒前
桥豆麻袋完成签到,获得积分10
23秒前
Akim应助皮老师采纳,获得10
25秒前
宜醉宜游宜睡应助小深采纳,获得10
25秒前
26秒前
11111完成签到,获得积分10
26秒前
Joyce完成签到,获得积分10
27秒前
27秒前
29秒前
29秒前
菠萝蜜完成签到,获得积分10
29秒前
30秒前
爆米花应助3263255采纳,获得10
30秒前
CodeCraft应助许杰亮采纳,获得10
32秒前
34秒前
35秒前
35秒前
37秒前
宁静致远完成签到,获得积分10
38秒前
和谐的小懒猪完成签到 ,获得积分10
41秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163007
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902812
捐赠科研通 2473633
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187