Deep learning for differentiation of benign and malignant solid liver lesions on ultrasonography

医学 肝病学 组织病理学 放射科 急诊分诊台 活检 超声波 超声科 诊断准确性 考试(生物学) 试验装置 病理 人工智能 内科学 计算机科学 急诊医学 古生物学 生物
作者
I. Xi,Jing Wu,Jing Guan,Paul J. Zhang,Steven C. Horii,Michael C. Soulen,Zishu Zhang,Harrison X. Bai
出处
期刊:Abdominal Imaging [Springer Nature]
卷期号:46 (2): 534-543 被引量:23
标识
DOI:10.1007/s00261-020-02564-w
摘要

The ability to reliably distinguish benign from malignant solid liver lesions on ultrasonography can increase access, decrease costs, and help to better triage patients for biopsy. In this study, we used deep learning to differentiate benign from malignant focal solid liver lesions based on their ultrasound appearance. Among the 596 patients who met the inclusion criteria, there were 911 images of individual liver lesions, of which 535 were malignant and 376 were benign. Our training set contained 660 lesions augmented dynamically during training for a total of 330,000 images; our test set contained 79 images. A neural network with ResNet50 architecture was fine-tuned using pre-trained weights on ImageNet. Non-cystic liver lesions with definite diagnosis by histopathology or MRI were included. Accuracy of the final model was compared with expert interpretation. Two separate datasets were used in training and evaluation, one with all lesions and one with lesions deemed to be of uncertain diagnosis based on the Code Abdomen rating system. Our model trained on the complete set of all lesions achieved a test accuracy of 0.84 (95% CI 0.74–0.90) compared to expert 1 with a test accuracy of 0.80 (95% CI 0.70–0.87) and expert 2 with a test accuracy of 0.73 (95% CI 0.63–0.82). Our model trained on the uncertain set of lesions achieved a test accuracy of 0.79 (95% CI 0.69–0.87) compared to expert 1 with a test accuracy of 0.70 (95% CI 0.59–0.78) and expert 2 with a test accuracy of 0.66 (95% CI 0.55–0.75). On the uncertain dataset, compared to all experts averaged, the model had higher test accuracy (0.79 vs. 0.68, p = 0.025). Deep learning algorithms proposed in the current study improve differentiation of benign from malignant ultrasound-captured solid liver lesions and perform comparably to expert radiologists. Deep learning tools can potentially be used to improve the accuracy and efficiency of clinical workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助薛定谔的猫采纳,获得10
1秒前
古月发布了新的文献求助30
1秒前
TIDUS发布了新的文献求助10
1秒前
Ava应助王359采纳,获得10
1秒前
付其喜完成签到,获得积分10
3秒前
冷公子完成签到,获得积分10
4秒前
小叶间静脉完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
sjfczyh完成签到,获得积分10
6秒前
orixero应助xiaomaxia采纳,获得10
8秒前
9秒前
10秒前
硕心发布了新的文献求助10
10秒前
sjfczyh发布了新的文献求助10
10秒前
Guo完成签到,获得积分10
12秒前
12秒前
宇少爱学习哟完成签到,获得积分10
13秒前
Owen应助科研duangduang采纳,获得30
14秒前
无限猕猴桃完成签到,获得积分10
16秒前
伯赏人杰完成签到,获得积分10
16秒前
17秒前
Akim应助赵李锋采纳,获得10
18秒前
keyword完成签到,获得积分10
21秒前
JM发布了新的文献求助10
22秒前
Oligo关注了科研通微信公众号
24秒前
26秒前
彭于晏应助付品聪采纳,获得10
28秒前
28秒前
29秒前
赵李锋发布了新的文献求助10
31秒前
33秒前
34秒前
36秒前
ding应助积极的帽子采纳,获得10
36秒前
请叫我风吹麦浪应助TIDUS采纳,获得10
37秒前
ms发布了新的文献求助10
39秒前
39秒前
轻松香寒完成签到,获得积分10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967175
求助须知:如何正确求助?哪些是违规求助? 3512515
关于积分的说明 11163672
捐赠科研通 3247423
什么是DOI,文献DOI怎么找? 1793810
邀请新用户注册赠送积分活动 874616
科研通“疑难数据库(出版商)”最低求助积分说明 804488