肠促胰岛素
2型糖尿病
内科学
内分泌学
长时程增强
胃抑制多肽
医学
激素
胰高血糖素样肽-1
体内
胰岛素
糖尿病
受体
生物
胰高血糖素
生物技术
作者
Eleonora Grespan,Toni Giorgino,Andrea Natali,Ele Ferrannini,Andrea Mari
标识
DOI:10.1016/j.metabol.2020.154415
摘要
Background and aims The reduced action of incretin hormones in type 2 diabetes (T2D) is mainly attributed to GIP insensitivity, but efficacy estimates of GIP and GLP-1 differ among studies, and the negligible effects of pharmacological GIP doses remain unexplained. We aimed to characterize incretin action in vivo in subjects with normal glucose tolerance (NGT) or T2D and provide an explanation for the different insulinotropic activity of GIP and GLP-1 in T2D subjects. Methods We used in vivo data from ten studies employing hormone infusion or an oral glucose test (OGTT). To homogeneously interpret and compare the results of the studies we performed the analysis using a mathematical model of the β-cell incorporating the effects of incretins on the triggering and amplifying pathways. The effect on the amplifying pathway was quantified by a time-dependent factor that is greater than one when insulin secretion (ISR) is amplified by incretins. To validate the model results for GIP in NGT subjects, we performed an extensive literature search of the available data. Results a) the stimulatory effects of GIP and GLP-1 differ markedly: ISR potentiation increases linearly with GLP-1 over the whole dose range, while with GIP infusion it reaches a plateau at ~100 pmol/L GIP, with ISR potentiation of ~2 fold; b) ISR potentiation in T2D is reduced by ~50% for GIP and by ~40% for GLP-1; c) the literature search of GIP in NGT subjects confirmed the saturative effect on insulin secretion. Conclusion We show that incretin potentiation of ISR is reduced in T2D, but not abolished, and that the lack of effects of pharmacological GIP doses is due to saturation of the GIP effect more than insensitivity to GIP in T2D.
科研通智能强力驱动
Strongly Powered by AbleSci AI