Comparison of GA-BP and PSO-BP neural network models with initial BP model for rainfall-induced landslides risk assessment in regional scale: a case study in Sichuan, China

山崩 粒子群优化 自然灾害 均方误差 水文地质学 反向传播 遗传算法 决定系数 人工神经网络 可靠性(半导体) 地质学 计算机科学 统计 算法 数学 气象学 人工智能 地理 地震学 岩土工程 机器学习 功率(物理) 物理 量子力学
作者
Chuan Zhu,Jianjing Zhang,Yang Liu,Donghao Ma,Mengfang Li,Bo Xiang
出处
期刊:Natural Hazards [Springer Science+Business Media]
卷期号:100 (1): 173-204 被引量:57
标识
DOI:10.1007/s11069-019-03806-x
摘要

With the increase in inclement weather conditions, many countries would experience more and more landslide hazards in the process of planning, designing and construction for engineering projects, especially in the mountainous regions. How to quickly and accurately assess potential landslide risk in a large region (> 10,000 km2) is facing challenge due to its complex geological conditions and large amount of landslides in the region. To optimize the accuracy of the existing models for a large region, in this study, the genetic algorithm (GA) and particle swarm optimization (PSO) are, respectively, coupled with the backpropagation (BP) neural network to determine the initial weights and thresholds in the BP neural network, which can be called GA-BP model and PSO-BP model. To show the reliability and accuracy of the new models in large region, the BP, GA-BP and PSO-BP models are evaluated based on root mean square error (RMSE), coefficient of determination (R2), Kappa coefficient (k), receiver operating characteristic (ROC), training time and condition factor weights by using 100 landslide samples from Sichuan Province, China. Results show that the RMSE values of the GA-BP model and the PSO model are, respectively, 22.6% and 5.1% lower than those of the BP model; the R2 values of the GA-BP model and the PSO model are, respectively, 24.9% and 6.2% higher than those of the BP model; the k values of the GA-BP model and the PSO model are, respectively, 44.3% and 15.4% higher than those of the BP model, and the areas under ROC of the GA-BP model and the PSO model are, respectively, 32.4% and 9.6% larger than those of the BP model. The GA-BP model and the PSO-BP model have better accuracy in the assessment of the overall risk value and the risk-level classification. The difference of the training time is small, and the sequences of condition factor weights given by the three models are consistent. In general, the GA-BP model is more effective for landslide risk assessment in large region. At last, this study gives proposed models under different engineering conditions, which can increase efficiency of the risk assessment for landslides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
CodeCraft应助chenhuihuang采纳,获得10
2秒前
2秒前
kyt发布了新的文献求助20
3秒前
happy发布了新的文献求助10
4秒前
yjf完成签到 ,获得积分10
4秒前
5秒前
insane完成签到,获得积分10
5秒前
5秒前
小西完成签到,获得积分10
6秒前
想吃糖葫芦完成签到 ,获得积分10
6秒前
8秒前
闫123完成签到,获得积分10
8秒前
落落完成签到 ,获得积分10
9秒前
10秒前
Hshi完成签到 ,获得积分10
12秒前
不安的晓灵完成签到 ,获得积分10
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
May应助科研通管家采纳,获得20
14秒前
yznfly应助科研通管家采纳,获得30
14秒前
Owen应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
XLL小绿绿发布了新的文献求助10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
64658应助科研通管家采纳,获得10
15秒前
!!应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966045
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157819
捐赠科研通 3245924
什么是DOI,文献DOI怎么找? 1793233
邀请新用户注册赠送积分活动 874278
科研通“疑难数据库(出版商)”最低求助积分说明 804304