Comparison of GA-BP and PSO-BP neural network models with initial BP model for rainfall-induced landslides risk assessment in regional scale: a case study in Sichuan, China

山崩 粒子群优化 自然灾害 均方误差 水文地质学 反向传播 遗传算法 决定系数 人工神经网络 可靠性(半导体) 地质学 计算机科学 统计 算法 数学 气象学 人工智能 地理 地震学 岩土工程 机器学习 功率(物理) 物理 量子力学
作者
Chong-hao Zhu,Jianjing Zhang,Yang Liu,MA Donghua,Mengfang Li,Bo Xiang
出处
期刊:Natural Hazards [Springer Nature]
卷期号:100 (1): 173-204 被引量:89
标识
DOI:10.1007/s11069-019-03806-x
摘要

With the increase in inclement weather conditions, many countries would experience more and more landslide hazards in the process of planning, designing and construction for engineering projects, especially in the mountainous regions. How to quickly and accurately assess potential landslide risk in a large region (> 10,000 km2) is facing challenge due to its complex geological conditions and large amount of landslides in the region. To optimize the accuracy of the existing models for a large region, in this study, the genetic algorithm (GA) and particle swarm optimization (PSO) are, respectively, coupled with the backpropagation (BP) neural network to determine the initial weights and thresholds in the BP neural network, which can be called GA-BP model and PSO-BP model. To show the reliability and accuracy of the new models in large region, the BP, GA-BP and PSO-BP models are evaluated based on root mean square error (RMSE), coefficient of determination (R2), Kappa coefficient (k), receiver operating characteristic (ROC), training time and condition factor weights by using 100 landslide samples from Sichuan Province, China. Results show that the RMSE values of the GA-BP model and the PSO model are, respectively, 22.6% and 5.1% lower than those of the BP model; the R2 values of the GA-BP model and the PSO model are, respectively, 24.9% and 6.2% higher than those of the BP model; the k values of the GA-BP model and the PSO model are, respectively, 44.3% and 15.4% higher than those of the BP model, and the areas under ROC of the GA-BP model and the PSO model are, respectively, 32.4% and 9.6% larger than those of the BP model. The GA-BP model and the PSO-BP model have better accuracy in the assessment of the overall risk value and the risk-level classification. The difference of the training time is small, and the sequences of condition factor weights given by the three models are consistent. In general, the GA-BP model is more effective for landslide risk assessment in large region. At last, this study gives proposed models under different engineering conditions, which can increase efficiency of the risk assessment for landslides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒飞丹完成签到,获得积分10
刚刚
2秒前
3秒前
3秒前
Baywreath完成签到,获得积分10
4秒前
竹筏过海应助Lei采纳,获得30
4秒前
马皓发布了新的文献求助10
4秒前
5秒前
田字格发布了新的文献求助10
6秒前
北极星发布了新的文献求助10
7秒前
8秒前
南原给南原的求助进行了留言
8秒前
9秒前
Wenjian7761完成签到,获得积分10
9秒前
缪缪发布了新的文献求助10
11秒前
老实的石头完成签到,获得积分10
11秒前
小吴同学发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
腼腆的若雁完成签到,获得积分10
15秒前
15秒前
fuiee发布了新的文献求助10
15秒前
小开心完成签到,获得积分10
15秒前
北极星完成签到,获得积分10
16秒前
cccc完成签到 ,获得积分10
16秒前
17秒前
Dogged完成签到 ,获得积分10
18秒前
耶啵耶啵完成签到 ,获得积分10
19秒前
mentality完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
20秒前
VDC应助机智寻雪采纳,获得30
20秒前
20秒前
jack_kunn发布了新的文献求助30
21秒前
22秒前
22秒前
田様应助linkman采纳,获得10
22秒前
zik完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714