已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparison of GA-BP and PSO-BP neural network models with initial BP model for rainfall-induced landslides risk assessment in regional scale: a case study in Sichuan, China

山崩 粒子群优化 自然灾害 均方误差 水文地质学 反向传播 遗传算法 决定系数 人工神经网络 可靠性(半导体) 地质学 计算机科学 统计 算法 数学 气象学 人工智能 地理 地震学 岩土工程 机器学习 物理 功率(物理) 量子力学
作者
Chuan Zhu,Jianjing Zhang,Yang Liu,Donghao Ma,Mengfang Li,Bo Xiang
出处
期刊:Natural Hazards [Springer Nature]
卷期号:100 (1): 173-204 被引量:57
标识
DOI:10.1007/s11069-019-03806-x
摘要

With the increase in inclement weather conditions, many countries would experience more and more landslide hazards in the process of planning, designing and construction for engineering projects, especially in the mountainous regions. How to quickly and accurately assess potential landslide risk in a large region (> 10,000 km2) is facing challenge due to its complex geological conditions and large amount of landslides in the region. To optimize the accuracy of the existing models for a large region, in this study, the genetic algorithm (GA) and particle swarm optimization (PSO) are, respectively, coupled with the backpropagation (BP) neural network to determine the initial weights and thresholds in the BP neural network, which can be called GA-BP model and PSO-BP model. To show the reliability and accuracy of the new models in large region, the BP, GA-BP and PSO-BP models are evaluated based on root mean square error (RMSE), coefficient of determination (R2), Kappa coefficient (k), receiver operating characteristic (ROC), training time and condition factor weights by using 100 landslide samples from Sichuan Province, China. Results show that the RMSE values of the GA-BP model and the PSO model are, respectively, 22.6% and 5.1% lower than those of the BP model; the R2 values of the GA-BP model and the PSO model are, respectively, 24.9% and 6.2% higher than those of the BP model; the k values of the GA-BP model and the PSO model are, respectively, 44.3% and 15.4% higher than those of the BP model, and the areas under ROC of the GA-BP model and the PSO model are, respectively, 32.4% and 9.6% larger than those of the BP model. The GA-BP model and the PSO-BP model have better accuracy in the assessment of the overall risk value and the risk-level classification. The difference of the training time is small, and the sequences of condition factor weights given by the three models are consistent. In general, the GA-BP model is more effective for landslide risk assessment in large region. At last, this study gives proposed models under different engineering conditions, which can increase efficiency of the risk assessment for landslides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助负责的幻波采纳,获得10
1秒前
1秒前
2秒前
3秒前
3秒前
cc发布了新的文献求助10
3秒前
科研力力完成签到 ,获得积分10
6秒前
忘皆空完成签到,获得积分10
7秒前
个性凡儿完成签到,获得积分10
7秒前
cc发布了新的文献求助10
7秒前
Misaki完成签到,获得积分10
7秒前
wanci应助sq0507采纳,获得30
8秒前
9秒前
王QQ发布了新的文献求助10
9秒前
pbj发布了新的文献求助10
9秒前
10秒前
14秒前
忘皆空发布了新的文献求助10
16秒前
DarwinZC发布了新的文献求助10
17秒前
NexusExplorer应助我我我采纳,获得10
22秒前
天天快乐应助DarwinZC采纳,获得10
22秒前
23秒前
27秒前
脑洞疼应助pbj采纳,获得10
27秒前
痴情的明辉完成签到 ,获得积分10
28秒前
kami完成签到 ,获得积分10
32秒前
nature完成签到 ,获得积分10
33秒前
cocolu应助germl采纳,获得10
34秒前
雪风完成签到 ,获得积分10
35秒前
37秒前
lenon完成签到,获得积分10
40秒前
wsrtowsr发布了新的文献求助10
40秒前
QueenY47发布了新的文献求助20
40秒前
41秒前
43秒前
罐头完成签到 ,获得积分10
44秒前
50秒前
QueenY47完成签到,获得积分10
50秒前
justsayit完成签到 ,获得积分10
51秒前
kk完成签到 ,获得积分10
53秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330247
求助须知:如何正确求助?哪些是违规求助? 2959843
关于积分的说明 8597367
捐赠科研通 2638376
什么是DOI,文献DOI怎么找? 1444234
科研通“疑难数据库(出版商)”最低求助积分说明 669078
邀请新用户注册赠送积分活动 656628