Automatic stent reconstruction in optical coherence tomography based on a deep convolutional model

光学相干层析成像 计算机科学 分割 人工智能 支架 计算机视觉 卷积神经网络 放射科 医学 模式识别(心理学)
作者
Peng Wu,Juan Luis Gutiérrez‐Chico,Hélène Tauzin,Wei Yang,Yingguang Li,Wei Yu,Miao Chu,Benoît Guillon,Jingfeng Bai,Nicolas Meneveau,William Wijns,Shengxian Tu
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:11 (6): 3374-3374 被引量:21
标识
DOI:10.1364/boe.390113
摘要

Intravascular optical coherence tomography (IVOCT) can accurately assess stent apposition and expansion, thus enabling the optimisation of a stenting procedure to minimize the risk of device failure. This paper presents a deep convolutional based model for automatic detection and segmentation of stent struts. The input of pseudo-3D images aggregated the information from adjacent frames to refine the probability of strut detection. In addition, multi-scale shortcut connections were implemented to minimize the loss of spatial resolution and refine the segmentation of strut contours. After training, the model was independently tested in 21,363 cross-sectional images from 170 IVOCT image pullbacks. The proposed model obtained excellent segmentation (0.907 Dice and 0.838 Jaccard) and detection metrics (0.943 precision, 0.940 recall and 0.936 F1-score), significantly better than conventional features-based algorithms. This performance was robust and homogenous among IVOCT pullbacks with different sources of acquisition (clinical centres, imaging operators, type of stent, time of acquisition and challenging scenarios). In addition, excellent agreement between the model and a commercialized software was observed in the quantification of clinically relevant parameters. In conclusion, the deep-convolutional model can accurately detect stent struts in IVOCT images, thus enabling the fully-automatic quantification of stent parameters in an extremely short time. It might facilitate the application of quantitative IVOCT analysis in real-world clinical scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助hd采纳,获得10
刚刚
jiangchuansm完成签到,获得积分10
1秒前
3秒前
kiko发布了新的文献求助10
3秒前
情怀应助不倦采纳,获得10
4秒前
4秒前
丘丘给丘丘的求助进行了留言
5秒前
larsy完成签到 ,获得积分10
5秒前
星辰大海应助江睿曦采纳,获得10
5秒前
浮游应助Petrichor采纳,获得10
6秒前
7秒前
8秒前
8秒前
9秒前
10秒前
10秒前
轻松元柏完成签到,获得积分20
10秒前
你爱我我爱你完成签到,获得积分10
12秒前
lulu发布了新的文献求助10
12秒前
DrCuiTianjin完成签到 ,获得积分0
12秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
kiko完成签到,获得积分10
14秒前
Wrr发布了新的文献求助10
14秒前
汉天完成签到,获得积分10
15秒前
轻松元柏发布了新的文献求助10
16秒前
skyelee完成签到,获得积分10
16秒前
18秒前
20秒前
我是老大应助硝基采纳,获得10
21秒前
22秒前
23秒前
石头完成签到,获得积分10
23秒前
23秒前
24秒前
Orange应助有意义采纳,获得10
25秒前
25秒前
hgnghn完成签到 ,获得积分10
26秒前
好滴捏发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458439
求助须知:如何正确求助?哪些是违规求助? 4564491
关于积分的说明 14295328
捐赠科研通 4489396
什么是DOI,文献DOI怎么找? 2459047
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424466