Automatic stent reconstruction in optical coherence tomography based on a deep convolutional model

光学相干层析成像 计算机科学 分割 人工智能 支架 计算机视觉 卷积神经网络 放射科 医学 模式识别(心理学)
作者
Peng Wu,Juan Luis Gutiérrez‐Chico,Hélène Tauzin,Wei Yang,Yingguang Li,Wei Yu,Miao Chu,Benoît Guillon,Jingfeng Bai,Nicolas Meneveau,William Wijns,Shengxian Tu
出处
期刊:Biomedical Optics Express [Optica Publishing Group]
卷期号:11 (6): 3374-3374 被引量:21
标识
DOI:10.1364/boe.390113
摘要

Intravascular optical coherence tomography (IVOCT) can accurately assess stent apposition and expansion, thus enabling the optimisation of a stenting procedure to minimize the risk of device failure. This paper presents a deep convolutional based model for automatic detection and segmentation of stent struts. The input of pseudo-3D images aggregated the information from adjacent frames to refine the probability of strut detection. In addition, multi-scale shortcut connections were implemented to minimize the loss of spatial resolution and refine the segmentation of strut contours. After training, the model was independently tested in 21,363 cross-sectional images from 170 IVOCT image pullbacks. The proposed model obtained excellent segmentation (0.907 Dice and 0.838 Jaccard) and detection metrics (0.943 precision, 0.940 recall and 0.936 F1-score), significantly better than conventional features-based algorithms. This performance was robust and homogenous among IVOCT pullbacks with different sources of acquisition (clinical centres, imaging operators, type of stent, time of acquisition and challenging scenarios). In addition, excellent agreement between the model and a commercialized software was observed in the quantification of clinically relevant parameters. In conclusion, the deep-convolutional model can accurately detect stent struts in IVOCT images, thus enabling the fully-automatic quantification of stent parameters in an extremely short time. It might facilitate the application of quantitative IVOCT analysis in real-world clinical scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭郭要努力ya完成签到 ,获得积分0
刚刚
科研通AI5应助kobe采纳,获得10
1秒前
to高坚果发布了新的文献求助10
2秒前
西门明雪完成签到,获得积分10
2秒前
自由的松发布了新的文献求助10
3秒前
5秒前
5秒前
olia发布了新的文献求助10
5秒前
Candice应助孤独树叶采纳,获得10
6秒前
YUJIALING完成签到 ,获得积分10
6秒前
酷波er应助tdtk采纳,获得10
6秒前
冰冰完成签到 ,获得积分20
7秒前
7秒前
7秒前
胡桃夹子发布了新的文献求助30
7秒前
8秒前
syxz0628发布了新的文献求助10
8秒前
都可以完成签到,获得积分10
8秒前
科研通AI5应助qfchen0716网易采纳,获得10
9秒前
JamesPei应助qfchen0716网易采纳,获得10
9秒前
丘比特应助qfchen0716网易采纳,获得10
9秒前
子川发布了新的文献求助10
9秒前
田様应助qfchen0716网易采纳,获得10
9秒前
科目三应助qfchen0716网易采纳,获得10
10秒前
黄紫红蓝应助qfchen0716网易采纳,获得10
10秒前
rr发布了新的文献求助10
10秒前
科目三应助qfchen0716网易采纳,获得10
10秒前
Orange应助qfchen0716网易采纳,获得10
10秒前
FashionBoy应助qfchen0716网易采纳,获得10
10秒前
今后应助qfchen0716网易采纳,获得10
10秒前
汉堡包应助Rober采纳,获得10
10秒前
11秒前
13秒前
哈哈哈哈发布了新的文献求助10
13秒前
张大旭77发布了新的文献求助10
14秒前
16秒前
科研通AI5应助感动苡采纳,获得10
17秒前
雪山大地完成签到,获得积分10
17秒前
Beton_X发布了新的文献求助40
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676