Automatic stent reconstruction in optical coherence tomography based on a deep convolutional model

光学相干层析成像 计算机科学 分割 人工智能 支架 计算机视觉 卷积神经网络 放射科 医学 模式识别(心理学)
作者
Peng Wu,Juan Luis Gutiérrez‐Chico,Hélène Tauzin,Wei Yang,Yingguang Li,Wei Yu,Miao Chu,Benoît Guillon,Jingfeng Bai,Nicolas Meneveau,William Wijns,Shengxian Tu
出处
期刊:Biomedical Optics Express [Optica Publishing Group]
卷期号:11 (6): 3374-3374 被引量:21
标识
DOI:10.1364/boe.390113
摘要

Intravascular optical coherence tomography (IVOCT) can accurately assess stent apposition and expansion, thus enabling the optimisation of a stenting procedure to minimize the risk of device failure. This paper presents a deep convolutional based model for automatic detection and segmentation of stent struts. The input of pseudo-3D images aggregated the information from adjacent frames to refine the probability of strut detection. In addition, multi-scale shortcut connections were implemented to minimize the loss of spatial resolution and refine the segmentation of strut contours. After training, the model was independently tested in 21,363 cross-sectional images from 170 IVOCT image pullbacks. The proposed model obtained excellent segmentation (0.907 Dice and 0.838 Jaccard) and detection metrics (0.943 precision, 0.940 recall and 0.936 F1-score), significantly better than conventional features-based algorithms. This performance was robust and homogenous among IVOCT pullbacks with different sources of acquisition (clinical centres, imaging operators, type of stent, time of acquisition and challenging scenarios). In addition, excellent agreement between the model and a commercialized software was observed in the quantification of clinically relevant parameters. In conclusion, the deep-convolutional model can accurately detect stent struts in IVOCT images, thus enabling the fully-automatic quantification of stent parameters in an extremely short time. It might facilitate the application of quantitative IVOCT analysis in real-world clinical scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lily_0_o完成签到,获得积分10
2秒前
2秒前
fxy发布了新的文献求助10
2秒前
快乐滑板发布了新的文献求助10
3秒前
YCW完成签到,获得积分10
3秒前
zzz完成签到 ,获得积分10
5秒前
柯一一应助Ldq采纳,获得10
6秒前
6秒前
Lily_0_o发布了新的文献求助10
7秒前
科研小菜鸡完成签到 ,获得积分10
9秒前
9秒前
blue发布了新的文献求助20
10秒前
10秒前
十七完成签到,获得积分10
12秒前
kaisen发布了新的文献求助10
13秒前
小岚乖乖发布了新的文献求助10
15秒前
完美世界应助撒西不理采纳,获得10
16秒前
酷波er应助Lily_0_o采纳,获得10
17秒前
吵闹完成签到,获得积分10
21秒前
如泣草芥完成签到,获得积分0
22秒前
22秒前
彩色靖儿完成签到 ,获得积分10
22秒前
23秒前
24秒前
八十八夜的茶摘完成签到,获得积分10
26秒前
安陌煜发布了新的文献求助10
26秒前
开心友儿完成签到,获得积分10
27秒前
不吃了完成签到 ,获得积分0
27秒前
Jyouang发布了新的文献求助10
28秒前
善学以致用应助leiqin采纳,获得10
28秒前
31秒前
fafamimireredo完成签到,获得积分10
32秒前
33秒前
Jyouang完成签到,获得积分10
33秒前
孙建波发布了新的文献求助10
33秒前
Zoe完成签到,获得积分10
33秒前
凌成败发布了新的文献求助20
34秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
程星宇发布了新的文献求助10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958087
求助须知:如何正确求助?哪些是违规求助? 3504271
关于积分的说明 11117667
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788396
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802541