Sortie-based aircraft component demand rate to predict requirements

备品备件 需求预测 自相残杀 航空 运筹学 供应链 计算机科学 环境科学 工程类 运营管理 经济 业务 航空航天工程 产业组织 营销
作者
Thomas O’Neal,John M. Dickens,L. Champagne,Aaron V. Glassburner,Jason R. Anderson,Timothy W. Breitbach
出处
期刊:Journal of defense analytics and logistics [Emerald (MCB UP)]
卷期号:5 (2): 214-223 被引量:2
标识
DOI:10.1108/jdal-10-2021-0009
摘要

Purpose Forecasting techniques improve supply chain resilience by ensuring that the correct parts are available when required. In addition, accurate forecasts conserve precious resources and money by avoiding new start contracts to produce unforeseen part requests, reducing labor intensive cannibalization actions and ensuring consistent transportation modality streams where changes incur cost. This study explores the effectiveness of the United States Air Force’s current flying hour-based demand forecast by comparing it with a sortie-based demand forecast to predict future spare part needs. Design/methodology/approach This study employs a correlation analysis to show that demand for reparable parts on certain aircraft has a stronger correlation to the number of sorties flown than the number of flying hours. The effect of using the number of sorties flown instead of flying hours is analyzed by employing sorties in the United States Air Force (USAF)’s current reparable parts forecasting model. A comparative analysis on D200 forecasting error is conducted across F-16 and B-52 fleets. Findings This study finds that the USAF could improve its reparable parts forecast, and subsequently part availability, by employing a sortie-based demand rate for particular aircraft such as the F-16. Additionally, our findings indicate that forecasts for reparable parts on aircraft with low sortie count flying profiles, such as the B-52 fleet, perform better modeling demand as a function of flying hours. Thus, evidence is provided that the Air Force should employ multiple forecasting techniques across its possessed, organically supported aircraft fleets. The improvement of the forecast and subsequent decrease in forecast error will be presented in the Results and Discussion section. Research limitations/implications This study is limited by the data-collection environment, which is only reported on an annual basis and is limited to 14 years of historical data. Furthermore, some observations were not included because significant data entry errors resulted in unusable observations. Originality/value There are few studies addressing the time measure of USAF reparable component failures. To the best of the authors’ knowledge, there are no studies that analyze spare component demand as a function of sortie numbers and compare the results of forecasts made on a sortie-based demand signal to the current flying hour-based approach to spare parts forecasting. The sortie-based forecast is a novel methodology and is shown to outperform the current flying hour-based method for some aircraft fleets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
应万言完成签到,获得积分10
1秒前
1秒前
高山七石发布了新的文献求助10
2秒前
2秒前
lyyt完成签到,获得积分20
2秒前
royz发布了新的文献求助10
3秒前
3秒前
4秒前
小蘑菇应助咖飞采纳,获得10
4秒前
无辜访彤完成签到,获得积分20
4秒前
聪明的小李完成签到 ,获得积分10
4秒前
小鲸完成签到,获得积分10
4秒前
4秒前
5秒前
慕容博发布了新的文献求助10
5秒前
BONBON发布了新的文献求助10
5秒前
lyyt发布了新的文献求助10
6秒前
7秒前
stuffmatter发布了新的文献求助10
7秒前
8秒前
8秒前
某某发布了新的文献求助10
8秒前
无辜访彤发布了新的文献求助10
9秒前
胖胖应助搬石头采纳,获得200
9秒前
ohhh发布了新的文献求助10
9秒前
小二郎应助大力翠阳采纳,获得10
9秒前
温凡之完成签到,获得积分10
10秒前
10秒前
11秒前
李健应助划水火大王采纳,获得10
11秒前
11秒前
11秒前
wanci应助伶俐的静柏采纳,获得10
12秒前
耍酷的白梦完成签到,获得积分10
12秒前
13秒前
13秒前
完美世界应助歌尽桃花坞采纳,获得10
13秒前
13秒前
Jasper应助π.采纳,获得10
14秒前
max发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543600
求助须知:如何正确求助?哪些是违规求助? 3120949
关于积分的说明 9344906
捐赠科研通 2818967
什么是DOI,文献DOI怎么找? 1549876
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126