A CT-based Radiomics Model for Prediction of Lymph Node Metastasis in Early Stage Gastric Cancer

无线电技术 医学 逻辑回归 淋巴结 放射科 阶段(地层学) 回顾性队列研究 癌症 内科学 生物 古生物学
作者
Xujie Gao,Tingting Ma,Jingli Cui,Yuwei Zhang,Lingling Wang,Hui Li,Zhaoxiang Ye
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:28 (6): e155-e164 被引量:39
标识
DOI:10.1016/j.acra.2020.03.045
摘要

Rationale and Objectives To develop and validate a CT-based radiomics model for preoperative prediction of lymph node metastasis (LNM) in early stage gastric cancer (EGC). Materials and Methods Four hundred and sixty-three consecutive EGC patients were enrolled in this retrospective study. Radiomics features were extracted from portal venous phase CT scans. A radiomics signature was built based on highly reproducible features using the least absolute shrinkage and selection operator method. The predictive performance of radiomics signature was tested in the training and testing cohorts. Multivariate logistic regression analysis was conducted to build a radiomics-based model combined radiomics signature and lymph node status according to CT. Performance of the model was determined by its discrimination, calibration, and clinical usefulness. Results The radiomics signature comprised six robust features showed significant association with LNM in both cohorts. A radiomics model that incorporated radiomics signature and CT-reported lymph node status showed good calibration and discrimination in the training cohort (AUC = 0.91) and testing cohort (AUC = 0.89). Decision curve analysis confirmed the clinical utility of this model. Conclusion The CT-based radiomics model showed favorable accuracy for prediction of LNM in EGC and may help to improve clinical decision-making. To develop and validate a CT-based radiomics model for preoperative prediction of lymph node metastasis (LNM) in early stage gastric cancer (EGC). Four hundred and sixty-three consecutive EGC patients were enrolled in this retrospective study. Radiomics features were extracted from portal venous phase CT scans. A radiomics signature was built based on highly reproducible features using the least absolute shrinkage and selection operator method. The predictive performance of radiomics signature was tested in the training and testing cohorts. Multivariate logistic regression analysis was conducted to build a radiomics-based model combined radiomics signature and lymph node status according to CT. Performance of the model was determined by its discrimination, calibration, and clinical usefulness. The radiomics signature comprised six robust features showed significant association with LNM in both cohorts. A radiomics model that incorporated radiomics signature and CT-reported lymph node status showed good calibration and discrimination in the training cohort (AUC = 0.91) and testing cohort (AUC = 0.89). Decision curve analysis confirmed the clinical utility of this model. The CT-based radiomics model showed favorable accuracy for prediction of LNM in EGC and may help to improve clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hhhh发布了新的文献求助10
2秒前
Catloaf完成签到,获得积分10
3秒前
3秒前
3秒前
H丶化羽完成签到,获得积分10
3秒前
5秒前
怕黑若云发布了新的文献求助10
6秒前
西西完成签到,获得积分10
6秒前
7秒前
7秒前
飞飞完成签到,获得积分10
7秒前
青争发布了新的文献求助10
7秒前
8秒前
一一完成签到,获得积分20
9秒前
9秒前
buzenilei发布了新的文献求助10
9秒前
隐形曼青应助lki采纳,获得10
10秒前
11秒前
YiJin_Wang完成签到,获得积分10
11秒前
语青发布了新的文献求助10
11秒前
11秒前
赘婿应助江湖郎中采纳,获得10
12秒前
123完成签到,获得积分10
12秒前
科研通AI6应助呐呐梨采纳,获得20
13秒前
量子星尘发布了新的文献求助20
13秒前
碧蓝从安发布了新的文献求助30
14秒前
Glufo发布了新的文献求助10
14秒前
Su发布了新的文献求助10
15秒前
斯文败类应助deway采纳,获得10
15秒前
whynot发布了新的文献求助10
15秒前
15秒前
酷炫的问筠完成签到,获得积分10
16秒前
ran完成签到,获得积分10
17秒前
Ava应助曾馨慧采纳,获得10
17秒前
gustavo完成签到,获得积分20
18秒前
Zack完成签到,获得积分10
19秒前
大个应助LLC采纳,获得10
19秒前
超级如风发布了新的文献求助30
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016122
求助须知:如何正确求助?哪些是违规求助? 4256293
关于积分的说明 13264157
捐赠科研通 4060200
什么是DOI,文献DOI怎么找? 2220658
邀请新用户注册赠送积分活动 1229998
关于科研通互助平台的介绍 1152626