A CT-based Radiomics Model for Prediction of Lymph Node Metastasis in Early Stage Gastric Cancer

无线电技术 医学 逻辑回归 淋巴结 放射科 阶段(地层学) 回顾性队列研究 癌症 内科学 古生物学 生物
作者
Xujie Gao,Tingting Ma,Jingli Cui,Yuwei Zhang,Lingling Wang,Hui Li,Zhaoxiang Ye
出处
期刊:Academic Radiology [Elsevier]
卷期号:28 (6): e155-e164 被引量:39
标识
DOI:10.1016/j.acra.2020.03.045
摘要

Rationale and Objectives To develop and validate a CT-based radiomics model for preoperative prediction of lymph node metastasis (LNM) in early stage gastric cancer (EGC). Materials and Methods Four hundred and sixty-three consecutive EGC patients were enrolled in this retrospective study. Radiomics features were extracted from portal venous phase CT scans. A radiomics signature was built based on highly reproducible features using the least absolute shrinkage and selection operator method. The predictive performance of radiomics signature was tested in the training and testing cohorts. Multivariate logistic regression analysis was conducted to build a radiomics-based model combined radiomics signature and lymph node status according to CT. Performance of the model was determined by its discrimination, calibration, and clinical usefulness. Results The radiomics signature comprised six robust features showed significant association with LNM in both cohorts. A radiomics model that incorporated radiomics signature and CT-reported lymph node status showed good calibration and discrimination in the training cohort (AUC = 0.91) and testing cohort (AUC = 0.89). Decision curve analysis confirmed the clinical utility of this model. Conclusion The CT-based radiomics model showed favorable accuracy for prediction of LNM in EGC and may help to improve clinical decision-making. To develop and validate a CT-based radiomics model for preoperative prediction of lymph node metastasis (LNM) in early stage gastric cancer (EGC). Four hundred and sixty-three consecutive EGC patients were enrolled in this retrospective study. Radiomics features were extracted from portal venous phase CT scans. A radiomics signature was built based on highly reproducible features using the least absolute shrinkage and selection operator method. The predictive performance of radiomics signature was tested in the training and testing cohorts. Multivariate logistic regression analysis was conducted to build a radiomics-based model combined radiomics signature and lymph node status according to CT. Performance of the model was determined by its discrimination, calibration, and clinical usefulness. The radiomics signature comprised six robust features showed significant association with LNM in both cohorts. A radiomics model that incorporated radiomics signature and CT-reported lymph node status showed good calibration and discrimination in the training cohort (AUC = 0.91) and testing cohort (AUC = 0.89). Decision curve analysis confirmed the clinical utility of this model. The CT-based radiomics model showed favorable accuracy for prediction of LNM in EGC and may help to improve clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
元谷雪发布了新的文献求助10
3秒前
香蕉觅云应助77采纳,获得10
4秒前
赘婿应助阿正嗖啪采纳,获得10
4秒前
4秒前
慕青应助28551采纳,获得10
5秒前
CipherSage应助俏皮的吐司采纳,获得10
5秒前
6秒前
力劈华山完成签到,获得积分10
6秒前
科研通AI6应助fzzf采纳,获得10
7秒前
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
南桥完成签到,获得积分10
8秒前
别说话发布了新的文献求助10
8秒前
小白不白完成签到,获得积分10
9秒前
9秒前
美满的涔发布了新的文献求助10
9秒前
搜集达人应助尉迟十八采纳,获得60
9秒前
赘婿应助聪慧烤鸡采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
hearz发布了新的文献求助20
11秒前
LiXQ发布了新的文献求助10
12秒前
愚人发布了新的文献求助10
12秒前
yangtong发布了新的文献求助10
12秒前
14秒前
latadawang发布了新的文献求助30
15秒前
16秒前
17秒前
18秒前
18秒前
生动安波发布了新的文献求助10
19秒前
奥特曼发布了新的文献求助10
19秒前
小马甲应助22采纳,获得10
19秒前
兴奋蘑菇发布了新的文献求助10
19秒前
19秒前
hao123完成签到,获得积分10
20秒前
20秒前
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360