A CT-based Radiomics Model for Prediction of Lymph Node Metastasis in Early Stage Gastric Cancer

无线电技术 医学 逻辑回归 淋巴结 放射科 阶段(地层学) 回顾性队列研究 癌症 内科学 生物 古生物学
作者
Xujie Gao,Tingting Ma,Jingli Cui,Yuwei Zhang,Li Wang,Hui Li,Zhaoxiang Ye
出处
期刊:Academic Radiology [Elsevier]
卷期号:28 (6): e155-e164 被引量:31
标识
DOI:10.1016/j.acra.2020.03.045
摘要

Rationale and Objectives To develop and validate a CT-based radiomics model for preoperative prediction of lymph node metastasis (LNM) in early stage gastric cancer (EGC). Materials and Methods Four hundred and sixty-three consecutive EGC patients were enrolled in this retrospective study. Radiomics features were extracted from portal venous phase CT scans. A radiomics signature was built based on highly reproducible features using the least absolute shrinkage and selection operator method. The predictive performance of radiomics signature was tested in the training and testing cohorts. Multivariate logistic regression analysis was conducted to build a radiomics-based model combined radiomics signature and lymph node status according to CT. Performance of the model was determined by its discrimination, calibration, and clinical usefulness. Results The radiomics signature comprised six robust features showed significant association with LNM in both cohorts. A radiomics model that incorporated radiomics signature and CT-reported lymph node status showed good calibration and discrimination in the training cohort (AUC = 0.91) and testing cohort (AUC = 0.89). Decision curve analysis confirmed the clinical utility of this model. Conclusion The CT-based radiomics model showed favorable accuracy for prediction of LNM in EGC and may help to improve clinical decision-making. To develop and validate a CT-based radiomics model for preoperative prediction of lymph node metastasis (LNM) in early stage gastric cancer (EGC). Four hundred and sixty-three consecutive EGC patients were enrolled in this retrospective study. Radiomics features were extracted from portal venous phase CT scans. A radiomics signature was built based on highly reproducible features using the least absolute shrinkage and selection operator method. The predictive performance of radiomics signature was tested in the training and testing cohorts. Multivariate logistic regression analysis was conducted to build a radiomics-based model combined radiomics signature and lymph node status according to CT. Performance of the model was determined by its discrimination, calibration, and clinical usefulness. The radiomics signature comprised six robust features showed significant association with LNM in both cohorts. A radiomics model that incorporated radiomics signature and CT-reported lymph node status showed good calibration and discrimination in the training cohort (AUC = 0.91) and testing cohort (AUC = 0.89). Decision curve analysis confirmed the clinical utility of this model. The CT-based radiomics model showed favorable accuracy for prediction of LNM in EGC and may help to improve clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助科研通管家采纳,获得50
刚刚
Leon应助科研通管家采纳,获得30
刚刚
华仔应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得30
刚刚
kk完成签到,获得积分10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
刚刚
sutharsons应助科研通管家采纳,获得30
刚刚
星河完成签到,获得积分10
3秒前
SDNUDRUG完成签到,获得积分10
3秒前
Rex完成签到,获得积分20
3秒前
LU41完成签到,获得积分10
3秒前
okbasf完成签到,获得积分10
3秒前
平常的镜子应助dingning采纳,获得20
5秒前
6秒前
完美世界应助迷路以筠采纳,获得10
9秒前
momo完成签到,获得积分10
10秒前
10秒前
lewis发布了新的文献求助10
11秒前
浪迹天涯应助求助采纳,获得10
11秒前
六月发布了新的文献求助10
11秒前
乌梅不乌发布了新的文献求助10
11秒前
八二力完成签到 ,获得积分10
11秒前
11秒前
16秒前
一夜很静应助迷人素采纳,获得10
17秒前
17秒前
耍酷的夏云应助SV采纳,获得10
19秒前
六月完成签到,获得积分10
23秒前
Anquan发布了新的文献求助10
23秒前
善学以致用应助好难啊采纳,获得10
23秒前
悦耳觅荷发布了新的文献求助10
24秒前
24秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851