已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A CT-based Radiomics Model for Prediction of Lymph Node Metastasis in Early Stage Gastric Cancer

无线电技术 医学 逻辑回归 淋巴结 放射科 阶段(地层学) 回顾性队列研究 癌症 内科学 古生物学 生物
作者
Xujie Gao,Tingting Ma,Jingli Cui,Yuwei Zhang,Lingling Wang,Hui Li,Zhaoxiang Ye
出处
期刊:Academic Radiology [Elsevier]
卷期号:28 (6): e155-e164 被引量:39
标识
DOI:10.1016/j.acra.2020.03.045
摘要

Rationale and Objectives To develop and validate a CT-based radiomics model for preoperative prediction of lymph node metastasis (LNM) in early stage gastric cancer (EGC). Materials and Methods Four hundred and sixty-three consecutive EGC patients were enrolled in this retrospective study. Radiomics features were extracted from portal venous phase CT scans. A radiomics signature was built based on highly reproducible features using the least absolute shrinkage and selection operator method. The predictive performance of radiomics signature was tested in the training and testing cohorts. Multivariate logistic regression analysis was conducted to build a radiomics-based model combined radiomics signature and lymph node status according to CT. Performance of the model was determined by its discrimination, calibration, and clinical usefulness. Results The radiomics signature comprised six robust features showed significant association with LNM in both cohorts. A radiomics model that incorporated radiomics signature and CT-reported lymph node status showed good calibration and discrimination in the training cohort (AUC = 0.91) and testing cohort (AUC = 0.89). Decision curve analysis confirmed the clinical utility of this model. Conclusion The CT-based radiomics model showed favorable accuracy for prediction of LNM in EGC and may help to improve clinical decision-making. To develop and validate a CT-based radiomics model for preoperative prediction of lymph node metastasis (LNM) in early stage gastric cancer (EGC). Four hundred and sixty-three consecutive EGC patients were enrolled in this retrospective study. Radiomics features were extracted from portal venous phase CT scans. A radiomics signature was built based on highly reproducible features using the least absolute shrinkage and selection operator method. The predictive performance of radiomics signature was tested in the training and testing cohorts. Multivariate logistic regression analysis was conducted to build a radiomics-based model combined radiomics signature and lymph node status according to CT. Performance of the model was determined by its discrimination, calibration, and clinical usefulness. The radiomics signature comprised six robust features showed significant association with LNM in both cohorts. A radiomics model that incorporated radiomics signature and CT-reported lymph node status showed good calibration and discrimination in the training cohort (AUC = 0.91) and testing cohort (AUC = 0.89). Decision curve analysis confirmed the clinical utility of this model. The CT-based radiomics model showed favorable accuracy for prediction of LNM in EGC and may help to improve clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NKKKKKK发布了新的文献求助10
刚刚
2秒前
熊逍发布了新的文献求助10
3秒前
江枫渔火完成签到 ,获得积分10
6秒前
没见云发布了新的文献求助10
6秒前
尊敬寒松发布了新的文献求助60
10秒前
11秒前
刻苦的冬易完成签到 ,获得积分10
14秒前
脑洞疼应助f1mike110采纳,获得10
14秒前
Orange应助超级野狼采纳,获得10
14秒前
15秒前
pay发布了新的文献求助10
17秒前
18秒前
细心怀亦完成签到 ,获得积分10
22秒前
sssyyy发布了新的文献求助10
23秒前
Guts发布了新的文献求助10
23秒前
28秒前
zl13332完成签到 ,获得积分10
30秒前
shy完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
33秒前
33秒前
111发布了新的文献求助10
35秒前
35秒前
38秒前
39秒前
马宁婧完成签到 ,获得积分10
42秒前
柠木完成签到 ,获得积分10
44秒前
Dr.c发布了新的文献求助10
46秒前
47秒前
小明完成签到,获得积分10
48秒前
Airsjz发布了新的文献求助10
53秒前
53秒前
Jemma完成签到 ,获得积分10
54秒前
轨迹应助小彬采纳,获得10
55秒前
Guts发布了新的文献求助10
56秒前
57秒前
DD发布了新的文献求助10
57秒前
zp19877891完成签到,获得积分10
58秒前
毛舒敏完成签到 ,获得积分10
1分钟前
Aris发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754502
求助须知:如何正确求助?哪些是违规求助? 5487138
关于积分的说明 15380163
捐赠科研通 4893049
什么是DOI,文献DOI怎么找? 2631710
邀请新用户注册赠送积分活动 1579665
关于科研通互助平台的介绍 1535387