A CT-based Radiomics Model for Prediction of Lymph Node Metastasis in Early Stage Gastric Cancer

无线电技术 医学 逻辑回归 淋巴结 放射科 阶段(地层学) 回顾性队列研究 癌症 内科学 生物 古生物学
作者
Xujie Gao,Tingting Ma,Jingli Cui,Yuwei Zhang,Li Wang,Hui Li,Zhaoxiang Ye
出处
期刊:Academic Radiology [Elsevier]
卷期号:28 (6): e155-e164 被引量:31
标识
DOI:10.1016/j.acra.2020.03.045
摘要

Rationale and Objectives To develop and validate a CT-based radiomics model for preoperative prediction of lymph node metastasis (LNM) in early stage gastric cancer (EGC). Materials and Methods Four hundred and sixty-three consecutive EGC patients were enrolled in this retrospective study. Radiomics features were extracted from portal venous phase CT scans. A radiomics signature was built based on highly reproducible features using the least absolute shrinkage and selection operator method. The predictive performance of radiomics signature was tested in the training and testing cohorts. Multivariate logistic regression analysis was conducted to build a radiomics-based model combined radiomics signature and lymph node status according to CT. Performance of the model was determined by its discrimination, calibration, and clinical usefulness. Results The radiomics signature comprised six robust features showed significant association with LNM in both cohorts. A radiomics model that incorporated radiomics signature and CT-reported lymph node status showed good calibration and discrimination in the training cohort (AUC = 0.91) and testing cohort (AUC = 0.89). Decision curve analysis confirmed the clinical utility of this model. Conclusion The CT-based radiomics model showed favorable accuracy for prediction of LNM in EGC and may help to improve clinical decision-making. To develop and validate a CT-based radiomics model for preoperative prediction of lymph node metastasis (LNM) in early stage gastric cancer (EGC). Four hundred and sixty-three consecutive EGC patients were enrolled in this retrospective study. Radiomics features were extracted from portal venous phase CT scans. A radiomics signature was built based on highly reproducible features using the least absolute shrinkage and selection operator method. The predictive performance of radiomics signature was tested in the training and testing cohorts. Multivariate logistic regression analysis was conducted to build a radiomics-based model combined radiomics signature and lymph node status according to CT. Performance of the model was determined by its discrimination, calibration, and clinical usefulness. The radiomics signature comprised six robust features showed significant association with LNM in both cohorts. A radiomics model that incorporated radiomics signature and CT-reported lymph node status showed good calibration and discrimination in the training cohort (AUC = 0.91) and testing cohort (AUC = 0.89). Decision curve analysis confirmed the clinical utility of this model. The CT-based radiomics model showed favorable accuracy for prediction of LNM in EGC and may help to improve clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hai发布了新的文献求助10
1秒前
展颜发布了新的文献求助10
2秒前
史先森完成签到,获得积分10
3秒前
DYB发布了新的文献求助10
4秒前
思源应助贺小刚采纳,获得10
4秒前
5秒前
vividkingking发布了新的文献求助10
5秒前
瓦斯兰德笑川皇完成签到,获得积分10
7秒前
7秒前
英俊的铭应助卿18900681672采纳,获得10
8秒前
佩佩发布了新的文献求助10
10秒前
菲1208完成签到,获得积分10
11秒前
jzyy完成签到 ,获得积分10
15秒前
15秒前
纪剑身完成签到,获得积分20
15秒前
16秒前
weijiechi完成签到,获得积分10
16秒前
科研通AI2S应助您好采纳,获得10
16秒前
今后应助您好采纳,获得10
16秒前
19秒前
纪剑身发布了新的文献求助10
20秒前
小小完成签到 ,获得积分10
20秒前
不扯先生完成签到,获得积分10
21秒前
22秒前
oppoaply发布了新的文献求助10
25秒前
SciGPT应助向日葵的Rui采纳,获得10
25秒前
26秒前
炙热芝完成签到,获得积分10
29秒前
29秒前
木村拓哉发布了新的文献求助10
32秒前
端庄煎饼发布了新的文献求助10
33秒前
Lexa发布了新的文献求助10
34秒前
34秒前
王嘉尔完成签到,获得积分20
35秒前
麻辣香锅应助星下梧桐采纳,获得30
35秒前
36秒前
38秒前
科研公主完成签到,获得积分10
39秒前
39秒前
科目三应助努力毕业、采纳,获得10
40秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155767
求助须知:如何正确求助?哪些是违规求助? 2807008
关于积分的说明 7871598
捐赠科研通 2465380
什么是DOI,文献DOI怎么找? 1312221
科研通“疑难数据库(出版商)”最低求助积分说明 629947
版权声明 601905