已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study

医学 新辅助治疗 结直肠癌 放射科 磁共振成像 逻辑回归 全直肠系膜切除术 无线电技术 神经组阅片室 内科学 核医学 癌症 乳腺癌 神经学 精神科
作者
Hiram Shaish,Andrew Aukerman,R. Vanguri,Antonino Spinelli,Paul M. Armenta,Sachin Jambawalikar,Jasnit Makkar,Stuart Bentley–Hibbert,Armando Del Portillo,Ravi P. Kiran,Lara Monti,Cristiana Bonifacio,Margarita Kirienko,Kevin Gardner,Lawrence H. Schwartz,Deborah S. Keller
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (11): 6263-6273 被引量:105
标识
DOI:10.1007/s00330-020-06968-6
摘要

To investigate whether pretreatment MRI-based radiomics of locally advanced rectal cancer (LARC) and/or the surrounding mesorectal compartment (MC) can predict pathologic complete response (pCR), neoadjuvant rectal (NAR) score, and tumor regression grade (TRG). One hundred thirty-two consecutive patients with LARC who underwent neoadjuvant chemoradiation and total mesorectal excision (TME) were retrospectively collected from 2 centers in the USA and Italy. The primary tumor and surrounding MC were segmented on the best available T2-weighted sequence (axial, coronal, or sagittal). Three thousand one hundred ninety radiomic features were extracted using a python package. The most salient radiomic features as well as MRI parameter and clinical-based features were selected using recursive feature elimination. A logistic regression classifier was built to distinguish between any 2 binned categories in the considered endpoints: pCR, NAR, and TRG. Repeated k-fold validation was performed and AUCs calculated. There were 24, 87, and 21 T4, T3, and T2 LARCs, respectively (median age 63 years, 32 to 86). For NAR and TRG, the best classification performance was obtained using both the tumor and MC segmentations. The AUCs for classifying NAR 0 versus 2, pCR, and TRG 0/1 versus 2/3 were 0.66 (95% CI, 0.60–0.71), 0.80 (95% CI, 0.74–0.85), and 0.80 (95% CI, 0.77–0.82), respectively. Radiomics of pretreatment MRIs can predict pCR, TRG, and NAR score in patients with LARC undergoing neoadjuvant treatment and TME with moderate accuracy despite extremely heterogenous image data. Both the tumor and MC contain important prognostic information. • Machine learning of rectal cancer on images from the pretreatment MRI can predict important patient outcomes with moderate accuracy. • The tumor and the tissue around it both contain important prognostic information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
封从霜发布了新的文献求助10
刚刚
Ali完成签到,获得积分10
1秒前
mwm完成签到 ,获得积分10
3秒前
4秒前
慕玖淇完成签到 ,获得积分10
8秒前
小张完成签到 ,获得积分10
9秒前
TIDUS完成签到,获得积分10
10秒前
头上有犄角bb完成签到 ,获得积分10
12秒前
12秒前
莫寻双完成签到,获得积分10
14秒前
14秒前
元儿圆发布了新的文献求助10
16秒前
科研通AI6应助Nikki采纳,获得10
17秒前
大学生完成签到 ,获得积分10
18秒前
a36380382完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
肉肉完成签到 ,获得积分10
21秒前
随机科研完成签到,获得积分10
22秒前
TiAmo完成签到 ,获得积分10
22秒前
23秒前
大方芷文发布了新的文献求助20
24秒前
Dear77完成签到,获得积分10
25秒前
25秒前
清爽乐菱发布了新的文献求助30
25秒前
TIDUS完成签到,获得积分10
26秒前
59发布了新的文献求助10
27秒前
畅快枕头完成签到 ,获得积分0
27秒前
秋老众少年完成签到 ,获得积分10
29秒前
哲别发布了新的文献求助10
30秒前
drwzm完成签到 ,获得积分10
30秒前
Intjer发布了新的文献求助10
31秒前
33秒前
勤恳冰淇淋完成签到 ,获得积分10
35秒前
36秒前
净坛使者完成签到,获得积分10
38秒前
wangyan发布了新的文献求助30
39秒前
木习习完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458721
求助须知:如何正确求助?哪些是违规求助? 4564728
关于积分的说明 14296793
捐赠科研通 4489783
什么是DOI,文献DOI怎么找? 2459293
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424511