Optimal Sampling for Generalized Linear Models Under Measurement Constraints

数学 协变量 抽样分布 计算机科学 数学优化 样本量测定 重要性抽样 估计员 三角洲法 采样(信号处理) 切片取样 渐近分布 统计 算法 蒙特卡罗方法 滤波器(信号处理) 计算机视觉
作者
Tao Zhang,Yang Ning,David Ruppert
出处
期刊:Journal of Computational and Graphical Statistics [Taylor & Francis]
卷期号:30 (1): 106-114 被引量:13
标识
DOI:10.1080/10618600.2020.1778483
摘要

Under “measurement constraints,” responses are expensive to measure and initially unavailable on most of records in the dataset, but the covariates are available for the entire dataset. Our goal is to sample a relatively small portion of the dataset where the expensive responses will be measured and the resultant sampling estimator is statistically efficient. Measurement constraints require the sampling probabilities can only depend on a very small set of the responses. A sampling procedure that uses responses at most only on a small pilot sample will be called “response-free.” We propose a response-free sampling procedure optimal sampling under measurement constraints (OSUMC) for generalized linear models. Using the A-optimality criterion, that is, the trace of the asymptotic variance, the resultant estimator is statistically efficient within a class of sampling estimators. We establish the unconditional asymptotic distribution of a general class of response-free sampling estimators. This result is novel compared with the existing conditional results obtained by conditioning on both covariates and responses. Under our unconditional framework, the subsamples are no longer independent and new martingale techniques are developed for our asymptotic theory. We further derive the A-optimal response-free sampling distribution. Since this distribution depends on population level quantities, we propose the OSUMC algorithm to approximate the theoretical optimal sampling. Finally, we conduct an intensive empirical study to demonstrate the advantages of OSUMC algorithm over existing methods in both statistical and computational perspectives. We find that OSUMC’s performance is comparable to that of sampling algorithms that use complete responses. This shows that, provided an efficient algorithm such as OSUMC is used, there is little or no loss in accuracy due to the unavailability of responses because of measurement constraints. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LaTeXer给fd163c的求助进行了留言
1秒前
小二郎应助pincoudegushi采纳,获得10
2秒前
虚幻的青槐完成签到,获得积分20
2秒前
3秒前
3秒前
奥特超曼应助高分子采纳,获得10
3秒前
mx发布了新的文献求助10
4秒前
4秒前
4秒前
han应助mmol采纳,获得10
4秒前
吴宣京完成签到,获得积分10
5秒前
dongdong发布了新的文献求助10
5秒前
自由噻完成签到,获得积分10
6秒前
天天快乐应助科研小贩采纳,获得10
6秒前
huang完成签到,获得积分10
7秒前
易三木完成签到,获得积分10
7秒前
大面包发布了新的文献求助10
7秒前
yangxunye发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
雯雯发布了新的文献求助20
8秒前
张伟发布了新的文献求助10
9秒前
10秒前
10秒前
鳗鱼野狼发布了新的文献求助10
10秒前
10秒前
12秒前
科研通AI5应助大老黑采纳,获得10
12秒前
12秒前
Ava应助mx采纳,获得10
13秒前
13秒前
释怀发布了新的文献求助30
14秒前
gjm发布了新的文献求助10
14秒前
pincoudegushi发布了新的文献求助10
15秒前
yangxunye完成签到,获得积分20
16秒前
16秒前
16秒前
wanci应助shadow采纳,获得10
17秒前
牛牛发布了新的文献求助10
19秒前
易酰水烊酸完成签到,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021