Optimal Sampling for Generalized Linear Models Under Measurement Constraints

数学 协变量 抽样分布 计算机科学 数学优化 样本量测定 重要性抽样 估计员 三角洲法 采样(信号处理) 切片取样 渐近分布 统计 算法 蒙特卡罗方法 滤波器(信号处理) 计算机视觉
作者
Tao Zhang,Yang Ning,David Ruppert
出处
期刊:Journal of Computational and Graphical Statistics [Taylor & Francis]
卷期号:30 (1): 106-114 被引量:13
标识
DOI:10.1080/10618600.2020.1778483
摘要

Under “measurement constraints,” responses are expensive to measure and initially unavailable on most of records in the dataset, but the covariates are available for the entire dataset. Our goal is to sample a relatively small portion of the dataset where the expensive responses will be measured and the resultant sampling estimator is statistically efficient. Measurement constraints require the sampling probabilities can only depend on a very small set of the responses. A sampling procedure that uses responses at most only on a small pilot sample will be called “response-free.” We propose a response-free sampling procedure optimal sampling under measurement constraints (OSUMC) for generalized linear models. Using the A-optimality criterion, that is, the trace of the asymptotic variance, the resultant estimator is statistically efficient within a class of sampling estimators. We establish the unconditional asymptotic distribution of a general class of response-free sampling estimators. This result is novel compared with the existing conditional results obtained by conditioning on both covariates and responses. Under our unconditional framework, the subsamples are no longer independent and new martingale techniques are developed for our asymptotic theory. We further derive the A-optimal response-free sampling distribution. Since this distribution depends on population level quantities, we propose the OSUMC algorithm to approximate the theoretical optimal sampling. Finally, we conduct an intensive empirical study to demonstrate the advantages of OSUMC algorithm over existing methods in both statistical and computational perspectives. We find that OSUMC’s performance is comparable to that of sampling algorithms that use complete responses. This shows that, provided an efficient algorithm such as OSUMC is used, there is little or no loss in accuracy due to the unavailability of responses because of measurement constraints. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪花发布了新的文献求助10
刚刚
秀丽笑容完成签到 ,获得积分10
4秒前
江湖应助聪慧芷巧采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
Rjy完成签到 ,获得积分10
12秒前
性感母蟑螂完成签到 ,获得积分10
18秒前
ruochenzu完成签到,获得积分10
20秒前
陈尹蓝完成签到 ,获得积分10
21秒前
天道酬勤完成签到,获得积分10
23秒前
25秒前
仁爱的谷南完成签到,获得积分10
25秒前
雯雯完成签到 ,获得积分10
27秒前
一路有你完成签到 ,获得积分10
27秒前
28秒前
ruochenzu发布了新的文献求助10
28秒前
30秒前
wanghao完成签到 ,获得积分10
31秒前
图图发布了新的文献求助10
31秒前
十三完成签到 ,获得积分10
31秒前
聪慧芷巧完成签到,获得积分10
32秒前
米博士完成签到,获得积分10
33秒前
研友_VZGVzn完成签到,获得积分10
34秒前
Cheung2121发布了新的文献求助30
35秒前
黄芩完成签到 ,获得积分10
36秒前
53秒前
秋半梦完成签到,获得积分10
55秒前
李爱国应助科研通管家采纳,获得10
58秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
搜集达人应助科研通管家采纳,获得10
58秒前
打地鼠工人完成签到,获得积分10
59秒前
彩色半烟完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Ning完成签到,获得积分10
1分钟前
图图完成签到,获得积分10
1分钟前
勤奋的灯完成签到 ,获得积分10
1分钟前
ludong_0完成签到,获得积分10
1分钟前
Asumita完成签到,获得积分10
1分钟前
双青豆完成签到 ,获得积分10
1分钟前
1分钟前
fxy完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022