Optimal Sampling for Generalized Linear Models Under Measurement Constraints

数学 协变量 抽样分布 计算机科学 数学优化 样本量测定 重要性抽样 估计员 三角洲法 采样(信号处理) 切片取样 渐近分布 统计 算法 蒙特卡罗方法 滤波器(信号处理) 计算机视觉
作者
Tao Zhang,Yang Ning,David Ruppert
出处
期刊:Journal of Computational and Graphical Statistics [Taylor & Francis]
卷期号:30 (1): 106-114 被引量:13
标识
DOI:10.1080/10618600.2020.1778483
摘要

Under “measurement constraints,” responses are expensive to measure and initially unavailable on most of records in the dataset, but the covariates are available for the entire dataset. Our goal is to sample a relatively small portion of the dataset where the expensive responses will be measured and the resultant sampling estimator is statistically efficient. Measurement constraints require the sampling probabilities can only depend on a very small set of the responses. A sampling procedure that uses responses at most only on a small pilot sample will be called “response-free.” We propose a response-free sampling procedure optimal sampling under measurement constraints (OSUMC) for generalized linear models. Using the A-optimality criterion, that is, the trace of the asymptotic variance, the resultant estimator is statistically efficient within a class of sampling estimators. We establish the unconditional asymptotic distribution of a general class of response-free sampling estimators. This result is novel compared with the existing conditional results obtained by conditioning on both covariates and responses. Under our unconditional framework, the subsamples are no longer independent and new martingale techniques are developed for our asymptotic theory. We further derive the A-optimal response-free sampling distribution. Since this distribution depends on population level quantities, we propose the OSUMC algorithm to approximate the theoretical optimal sampling. Finally, we conduct an intensive empirical study to demonstrate the advantages of OSUMC algorithm over existing methods in both statistical and computational perspectives. We find that OSUMC’s performance is comparable to that of sampling algorithms that use complete responses. This shows that, provided an efficient algorithm such as OSUMC is used, there is little or no loss in accuracy due to the unavailability of responses because of measurement constraints. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Neo完成签到,获得积分10
刚刚
slr发布了新的文献求助10
1秒前
freeaway完成签到 ,获得积分10
1秒前
1秒前
2秒前
俊秀的卿发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
8R60d8应助xiaosu采纳,获得10
5秒前
liii发布了新的文献求助10
6秒前
momo发布了新的文献求助10
7秒前
赘婿应助Fengliguantou采纳,获得10
9秒前
不安的紫翠完成签到,获得积分10
11秒前
魁梧的鲂完成签到,获得积分10
12秒前
14秒前
华仔应助momo采纳,获得10
14秒前
隐形的糖豆完成签到,获得积分10
15秒前
qjq琪完成签到 ,获得积分10
15秒前
16秒前
17秒前
魁梧的鲂发布了新的文献求助10
18秒前
18秒前
19秒前
Lucas应助ysy采纳,获得10
20秒前
诚心的扬完成签到 ,获得积分10
20秒前
苗条梦玉发布了新的文献求助10
21秒前
cjdsb发布了新的文献求助10
21秒前
传奇3应助奋斗夏烟采纳,获得10
22秒前
23秒前
脑洞疼应助LW采纳,获得30
23秒前
26秒前
27秒前
妮妮完成签到,获得积分10
27秒前
29秒前
mmm发布了新的文献求助10
30秒前
ding应助科研通管家采纳,获得10
30秒前
bkagyin应助科研通管家采纳,获得10
30秒前
科目三应助科研通管家采纳,获得10
30秒前
SciGPT应助科研通管家采纳,获得10
30秒前
地表飞猪应助科研通管家采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173