Optimal Sampling for Generalized Linear Models Under Measurement Constraints

数学 协变量 抽样分布 计算机科学 数学优化 样本量测定 重要性抽样 估计员 三角洲法 采样(信号处理) 切片取样 渐近分布 统计 算法 蒙特卡罗方法 滤波器(信号处理) 计算机视觉
作者
Tao Zhang,Yang Ning,David Ruppert
出处
期刊:Journal of Computational and Graphical Statistics [Informa]
卷期号:30 (1): 106-114 被引量:13
标识
DOI:10.1080/10618600.2020.1778483
摘要

Under “measurement constraints,” responses are expensive to measure and initially unavailable on most of records in the dataset, but the covariates are available for the entire dataset. Our goal is to sample a relatively small portion of the dataset where the expensive responses will be measured and the resultant sampling estimator is statistically efficient. Measurement constraints require the sampling probabilities can only depend on a very small set of the responses. A sampling procedure that uses responses at most only on a small pilot sample will be called “response-free.” We propose a response-free sampling procedure optimal sampling under measurement constraints (OSUMC) for generalized linear models. Using the A-optimality criterion, that is, the trace of the asymptotic variance, the resultant estimator is statistically efficient within a class of sampling estimators. We establish the unconditional asymptotic distribution of a general class of response-free sampling estimators. This result is novel compared with the existing conditional results obtained by conditioning on both covariates and responses. Under our unconditional framework, the subsamples are no longer independent and new martingale techniques are developed for our asymptotic theory. We further derive the A-optimal response-free sampling distribution. Since this distribution depends on population level quantities, we propose the OSUMC algorithm to approximate the theoretical optimal sampling. Finally, we conduct an intensive empirical study to demonstrate the advantages of OSUMC algorithm over existing methods in both statistical and computational perspectives. We find that OSUMC’s performance is comparable to that of sampling algorithms that use complete responses. This shows that, provided an efficient algorithm such as OSUMC is used, there is little or no loss in accuracy due to the unavailability of responses because of measurement constraints. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
七七八八发布了新的文献求助10
1秒前
meng发布了新的文献求助10
2秒前
3秒前
活泼元瑶发布了新的文献求助10
3秒前
xzf1996发布了新的文献求助10
4秒前
顺利毕业完成签到,获得积分10
4秒前
深情安青应助Wang采纳,获得10
4秒前
星辰大海应助朱佳玉采纳,获得10
4秒前
5秒前
Witty完成签到,获得积分10
5秒前
5秒前
在水一方应助Abi采纳,获得10
6秒前
猴王发布了新的文献求助30
7秒前
水知寒完成签到,获得积分10
7秒前
7秒前
7秒前
七七八八完成签到,获得积分10
8秒前
9秒前
香蕉觅云应助独特的凝荷采纳,获得10
10秒前
10秒前
斯文败类应助小林同学采纳,获得30
11秒前
柔之发布了新的文献求助10
12秒前
糖糖发布了新的文献求助10
14秒前
碗碗发布了新的文献求助10
14秒前
15秒前
xzy998应助哭泣的映寒采纳,获得10
18秒前
20秒前
20秒前
iNk应助李大白采纳,获得20
20秒前
21秒前
有生之年完成签到,获得积分10
23秒前
朱佳玉发布了新的文献求助10
23秒前
HUCAI完成签到,获得积分10
23秒前
Moon丶33完成签到,获得积分10
25秒前
anydwason完成签到,获得积分10
27秒前
28秒前
28秒前
邹修坤发布了新的文献求助10
30秒前
哑剧完成签到,获得积分10
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141028
求助须知:如何正确求助?哪些是违规求助? 2791955
关于积分的说明 7801220
捐赠科研通 2448217
什么是DOI,文献DOI怎么找? 1302479
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226