卷积神经网络
虚假关系
情态动词
鉴定(生物学)
计算机科学
图表
子空间拓扑
算法
不确定度量化
人工智能
数据挖掘
模式识别(心理学)
机器学习
生物
数据库
化学
植物
高分子化学
作者
Liang Su,Xin Huang,Ming-liang Song,James M. LaFave
出处
期刊:Structures
[Elsevier]
日期:2020-12-01
卷期号:28: 369-379
被引量:16
标识
DOI:10.1016/j.istruc.2020.08.077
摘要
A novel method for automatic identification of structural modal parameters is proposed, based on new developments in both uncertainty quantification for stochastic subspace identification and deep learning. An uncertainty diagram is first constructed to visualize uncertainty estimates, for clearly distinguishing spurious modes. Because the uncertainty of spurious modes is significantly larger than that of the real ones, a convolutional neural network (CNN) is adopted to automatically analyse the uncertainty diagram and efficiently determine the physical structural modes. The method is then applied to identify modal parameters for a six-degree-of-freedom spring–mass model, the Heritage Court Tower building in Canada, and the Ting Kau Bridge in Hong Kong. Results indicate for all three structures that the constructed CNN is effective for analysing the uncertainty diagram and can automatically and accurately obtain the real modes.
科研通智能强力驱动
Strongly Powered by AbleSci AI