Understanding the Dependence of Micropollutant Biotransformation Rates on Short-Term Temperature Shifts

生物转化 阿累尼乌斯方程 化学 环境化学 污染物 生化工程 生物系统 热力学 活化能 有机化学 生物 物理 工程类
作者
Paola Meynet,Russell J. Davenport,Kathrin Fenner
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:54 (19): 12214-12225 被引量:21
标识
DOI:10.1021/acs.est.0c04017
摘要

Temperature is a key factor that influences chemical biotransformation potential and rates, on which exposure and fate models rely to predict the environmental (micro)pollutant fate. Arrhenius-based models are currently implemented in environmental exposure assessment to adapt biotransformation rates to actual temperatures, assuming validity in the 0–30 °C range. However, evidence on how temperature shifts affect the physicochemical and microbial features in biological systems is scarce, questioning the validity of the existing modeling approaches. In this work, laboratory-scale batch assays were designed to investigate how a mixed microbial community responds to short-term temperature shifts, and how this impacts its ability to biotransform a range of structurally diverse micropollutants. Our results revealed three distinct kinetic responses at temperatures above 20 °C, mostly deviating from the classic Arrhenius-type behavior. Micropollutants with similar temperature responses appeared to undergo mostly similar initial biotransformation reactions, with substitution-type reactions maintaining Arrhenius-type behavior up to higher temperatures than oxidation-type reactions. Above 20 °C, the microbial community also showed marked shifts in both composition and activity, which mostly correlated with the observed deviations from Arrhenius-type behavior, with compositional changes becoming a more relevant factor in biotransformations catalyzed by more specific enzymes (e.g., oxidation reactions). Our findings underline the need to re-examine and further develop current environmental fate models by integrating biological aspects, to improve accuracy in predicting the environmental fate of micropollutants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助sss采纳,获得10
刚刚
fiery完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
Jasper应助King采纳,获得10
1秒前
lyu发布了新的文献求助10
2秒前
青青草原科研大王关注了科研通微信公众号
2秒前
2秒前
球球发布了新的文献求助10
2秒前
jinzhou完成签到,获得积分10
3秒前
animages完成签到,获得积分10
4秒前
程瀚砚发布了新的文献求助10
5秒前
忠义完成签到,获得积分10
5秒前
5秒前
小美完成签到,获得积分10
6秒前
nicewink完成签到,获得积分20
6秒前
Hello应助球球采纳,获得10
8秒前
MING完成签到,获得积分10
8秒前
小布丁完成签到,获得积分10
8秒前
wubobo发布了新的文献求助10
8秒前
9秒前
英俊的铭应助BaoCure采纳,获得10
9秒前
mbxjsy完成签到,获得积分10
9秒前
yao完成签到,获得积分10
9秒前
9秒前
程瀚砚完成签到,获得积分10
10秒前
10秒前
10秒前
澈哩子应助Echo采纳,获得10
11秒前
A徽发布了新的文献求助10
11秒前
qq完成签到,获得积分10
11秒前
11秒前
fiery关注了科研通微信公众号
12秒前
Ava应助好运接收集成器采纳,获得10
12秒前
helllxi完成签到,获得积分10
12秒前
12秒前
qitengzhu完成签到,获得积分20
13秒前
13秒前
文若完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660897
求助须知:如何正确求助?哪些是违规求助? 4836059
关于积分的说明 15092345
捐赠科研通 4819501
什么是DOI,文献DOI怎么找? 2579320
邀请新用户注册赠送积分活动 1533794
关于科研通互助平台的介绍 1492586