Tutorial: a guide to performing polygenic risk score analyses

多基因风险评分 计算生物学 计算机科学 生物信息学 人工智能 遗传学 基因型 单核苷酸多态性 生物 基因
作者
Shing Wan Choi,Timothy Shin Heng Mak,Paul F. O’Reilly
出处
期刊:Nature Protocols [Springer Nature]
卷期号:15 (9): 2759-2772 被引量:1861
标识
DOI:10.1038/s41596-020-0353-1
摘要

A polygenic score (PGS) or polygenic risk score (PRS) is an estimate of an individual’s genetic liability to a trait or disease, calculated according to their genotype profile and relevant genome-wide association study (GWAS) data. While present PRSs typically explain only a small fraction of trait variance, their correlation with the single largest contributor to phenotypic variation—genetic liability—has led to the routine application of PRSs across biomedical research. Among a range of applications, PRSs are exploited to assess shared etiology between phenotypes, to evaluate the clinical utility of genetic data for complex disease and as part of experimental studies in which, for example, experiments are performed that compare outcomes (e.g., gene expression and cellular response to treatment) between individuals with low and high PRS values. As GWAS sample sizes increase and PRSs become more powerful, PRSs are set to play a key role in research and stratified medicine. However, despite the importance and growing application of PRSs, there are limited guidelines for performing PRS analyses, which can lead to inconsistency between studies and misinterpretation of results. Here, we provide detailed guidelines for performing and interpreting PRS analyses. We outline standard quality control steps, discuss different methods for the calculation of PRSs, provide an introductory online tutorial, highlight common misconceptions relating to PRS results, offer recommendations for best practice and discuss future challenges. In this review, the authors present comprehensive guidelines for performing and evaluating PRS analyses. This is accompanied by an introductory online tutorial that takes users through quality control and visualization steps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待凡英完成签到,获得积分10
1秒前
安静的荧完成签到,获得积分10
2秒前
doudou发布了新的文献求助10
2秒前
3秒前
魔幻的宫苴完成签到,获得积分20
3秒前
爆米花应助Hibiscus95采纳,获得10
3秒前
xclpp发布了新的文献求助10
5秒前
6秒前
等待凡英发布了新的文献求助10
6秒前
蓝桉完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
茶荼完成签到,获得积分10
9秒前
Uranus完成签到,获得积分10
10秒前
10秒前
研友_VZG7GZ应助One采纳,获得10
10秒前
丰富靖琪完成签到 ,获得积分10
11秒前
wanci应助lixi采纳,获得10
12秒前
汤圆发布了新的文献求助10
12秒前
12秒前
Uranus发布了新的文献求助10
13秒前
所所应助Youlu采纳,获得10
13秒前
靓丽三德应助读书的时候采纳,获得10
13秒前
14秒前
王小雨发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
Hibiscus95发布了新的文献求助10
16秒前
17秒前
852应助Conley采纳,获得10
17秒前
17秒前
One完成签到,获得积分10
17秒前
zxn完成签到,获得积分10
18秒前
18秒前
lyr发布了新的文献求助10
18秒前
丘比特应助青栞采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720392
求助须知:如何正确求助?哪些是违规求助? 5259964
关于积分的说明 15291027
捐赠科研通 4869813
什么是DOI,文献DOI怎么找? 2615036
邀请新用户注册赠送积分活动 1565022
关于科研通互助平台的介绍 1522160