Underwater scene prior inspired deep underwater image and video enhancement

水下 人工智能 计算机视觉 卷积神经网络 计算机科学 能见度 特征(语言学) 模式识别(心理学) 地质学 光学 海洋学 物理 语言学 哲学
作者
Chongyi Li,Saeed Anwar,Fatih Porikli
出处
期刊:Pattern Recognition [Elsevier]
卷期号:98: 107038-107038 被引量:860
标识
DOI:10.1016/j.patcog.2019.107038
摘要

In underwater scenes, wavelength-dependent light absorption and scattering degrade the visibility of images and videos. The degraded underwater images and videos affect the accuracy of pattern recognition, visual understanding, and key feature extraction in underwater scenes. In this paper, we propose an underwater image enhancement convolutional neural network (CNN) model based on underwater scene prior, called UWCNN. Instead of estimating the parameters of underwater imaging model, the proposed UWCNN model directly reconstructs the clear latent underwater image, which benefits from the underwater scene prior which can be used to synthesize underwater image training data. Besides, based on the light-weight network structure and effective training data, our UWCNN model can be easily extended to underwater videos for frame-by-frame enhancement. Specifically, combining an underwater imaging physical model with optical properties of underwater scenes, we first synthesize underwater image degradation datasets which cover a diverse set of water types and degradation levels. Then, a light-weight CNN model is designed for enhancing each underwater scene type, which is trained by the corresponding training data. At last, this UWCNN model is directly extended to underwater video enhancement. Experiments on real-world and synthetic underwater images and videos demonstrate that our method generalizes well to different underwater scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
4秒前
嘉嘉完成签到,获得积分20
4秒前
5秒前
感谢发布了新的文献求助10
5秒前
liying发布了新的文献求助10
6秒前
sci2025opt完成签到 ,获得积分10
6秒前
6秒前
6秒前
叁叁肆发布了新的文献求助10
7秒前
充电宝应助义气的衬衫采纳,获得10
8秒前
科研通AI6应助茶米采纳,获得10
8秒前
英俊雪曼发布了新的文献求助10
8秒前
谨慎盼山发布了新的文献求助10
9秒前
9秒前
科研通AI6应助科研小白采纳,获得10
9秒前
year发布了新的文献求助10
10秒前
金小爬小金完成签到,获得积分20
10秒前
gyt完成签到,获得积分10
11秒前
小葱头发布了新的文献求助100
11秒前
11秒前
LJJ发布了新的文献求助10
12秒前
英俊的铭应助czf采纳,获得10
13秒前
shijie应助谨慎盼山采纳,获得10
14秒前
深情安青应助gyt采纳,获得10
15秒前
深情安青应助111采纳,获得10
15秒前
16秒前
爆米花应助嘉嘉采纳,获得10
16秒前
Ethel发布了新的文献求助10
16秒前
17秒前
zxswuyin完成签到,获得积分10
18秒前
18秒前
Akim应助Walker采纳,获得10
19秒前
狂野的厉发布了新的文献求助10
19秒前
liying完成签到,获得积分20
20秒前
AllIN发布了新的文献求助10
20秒前
nen完成签到 ,获得积分10
20秒前
登登应助zhuhan采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557467
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668341
捐赠科研通 4583911
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488818
关于科研通互助平台的介绍 1459439