Neural network soil moisture model for irrigation scheduling

灌溉调度 含水量 环境科学 灌溉 土壤科学 土壤水分 水分 农业工程 农学 工程类 气象学 岩土工程 生物 物理
作者
Zhe Gu,Tingting Zhu,Xiyun Jiao,Junzeng Xu,Zhiming Qi
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:180: 105801-105801 被引量:59
标识
DOI:10.1016/j.compag.2020.105801
摘要

Real-time irrigation scheduling systems attempt to eliminate crop water stress and achieve a high yield at harvest through the control of soil moisture. Artificial intelligence algorithms are possibly to learn the soil moisture dynamics in the soil-plant-atmosphere system and then are embedded into a low-cost controller to generate appropriate irrigation schedules. In this study, a neural network (NN) model was proposed to learn from a process-based agricultural systems model, the Root Zone Water Quality Model (RZWQM2) in predicting the root zone soil moisture during the crop growing season. Climatic data, rooting depth and hesternal soil moisture are set as inputs of the NN model to predict intraday soil moisture in different layers. Conditions with and without water supply are modeled separately to achieve a higher accuracy. The NN-based irrigation scheduling method (NN method), triggers irrigation when the predicted soil moisture drops to a level defined by the product of management-allowed depletion multiplied by the depth of available water to plant. Irrigation quantity was set to replenish the root zone soil water content to field capacity. NN method was compared with the reported water stress (WS) method based on RZWQM2. The results reveal that though the constructed NN model well-predicted soil moisture changes during the main crop season with minor errors, but the error was larger at lower soil moisture thereby decreased the scheduling efficiency. An NN ensemble model was tested and shown to improve the precision and robustness of soil moisture prediction as well as the scheduling performance in view of water conservation and yield maintenance. Combined with the NN ensemble model and adjusted lowest soil moisture for triggering irrigations, the NN ensemble-based irrigation scheduling method achieved a performance not better than that of the RZWQM2-WS method but exceeded the method based on evapotranspiration and water balance by up to 20%. The constructed NN ensemble model and NN ensemble-based irrigation scheduling method could act as an alternative to predicting soil moisture and obtaining efficient irrigation scheduling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
kanwenxian发布了新的文献求助10
3秒前
77发布了新的文献求助10
4秒前
桐桐应助顺心火龙果采纳,获得10
4秒前
小彤完成签到 ,获得积分10
5秒前
TCB发布了新的文献求助10
6秒前
leo_twli发布了新的文献求助10
6秒前
7秒前
7秒前
冷傲迎梦完成签到,获得积分20
8秒前
传奇3应助lyyyy采纳,获得10
9秒前
wu关注了科研通微信公众号
9秒前
量子星尘发布了新的文献求助10
10秒前
bkagyin应助LKF采纳,获得10
10秒前
苇一发布了新的文献求助10
11秒前
TCB完成签到,获得积分10
11秒前
11秒前
啵清啵发布了新的文献求助20
12秒前
Irony发布了新的文献求助10
12秒前
13秒前
大模型应助7275XXX采纳,获得10
14秒前
111完成签到 ,获得积分10
14秒前
zcj完成签到,获得积分10
14秒前
深情的鞯完成签到,获得积分10
15秒前
打打应助77采纳,获得30
15秒前
meng完成签到 ,获得积分10
16秒前
sunny完成签到 ,获得积分10
17秒前
Irony完成签到,获得积分10
18秒前
Lucas应助123采纳,获得10
19秒前
wanci应助lisa采纳,获得10
19秒前
清梦发布了新的文献求助10
20秒前
tc发布了新的文献求助10
20秒前
21秒前
陈小军关注了科研通微信公众号
21秒前
21秒前
归尘应助Bismarck采纳,获得10
22秒前
匹诺曹完成签到,获得积分10
22秒前
科研通AI5应助温柔的幻露采纳,获得10
23秒前
25秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970008
求助须知:如何正确求助?哪些是违规求助? 3514711
关于积分的说明 11175563
捐赠科研通 3250077
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804931