Neural network soil moisture model for irrigation scheduling

灌溉调度 含水量 环境科学 灌溉 土壤科学 土壤水分 水分 农业工程 农学 工程类 气象学 岩土工程 生物 物理
作者
Zhe Gu,Tingting Zhu,Xiyun Jiao,Junzeng Xu,Zhiming Qi
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:180: 105801-105801 被引量:49
标识
DOI:10.1016/j.compag.2020.105801
摘要

Real-time irrigation scheduling systems attempt to eliminate crop water stress and achieve a high yield at harvest through the control of soil moisture. Artificial intelligence algorithms are possibly to learn the soil moisture dynamics in the soil-plant-atmosphere system and then are embedded into a low-cost controller to generate appropriate irrigation schedules. In this study, a neural network (NN) model was proposed to learn from a process-based agricultural systems model, the Root Zone Water Quality Model (RZWQM2) in predicting the root zone soil moisture during the crop growing season. Climatic data, rooting depth and hesternal soil moisture are set as inputs of the NN model to predict intraday soil moisture in different layers. Conditions with and without water supply are modeled separately to achieve a higher accuracy. The NN-based irrigation scheduling method (NN method), triggers irrigation when the predicted soil moisture drops to a level defined by the product of management-allowed depletion multiplied by the depth of available water to plant. Irrigation quantity was set to replenish the root zone soil water content to field capacity. NN method was compared with the reported water stress (WS) method based on RZWQM2. The results reveal that though the constructed NN model well-predicted soil moisture changes during the main crop season with minor errors, but the error was larger at lower soil moisture thereby decreased the scheduling efficiency. An NN ensemble model was tested and shown to improve the precision and robustness of soil moisture prediction as well as the scheduling performance in view of water conservation and yield maintenance. Combined with the NN ensemble model and adjusted lowest soil moisture for triggering irrigations, the NN ensemble-based irrigation scheduling method achieved a performance not better than that of the RZWQM2-WS method but exceeded the method based on evapotranspiration and water balance by up to 20%. The constructed NN ensemble model and NN ensemble-based irrigation scheduling method could act as an alternative to predicting soil moisture and obtaining efficient irrigation scheduling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
当蒋不当蒋给当蒋不当蒋的求助进行了留言
刚刚
Yes211发布了新的文献求助10
1秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得30
3秒前
达到顶峰发布了新的文献求助10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
3秒前
fasdfkgh应助科研通管家采纳,获得20
3秒前
慢慢完成签到,获得积分10
4秒前
4秒前
duoa发布了新的文献求助30
5秒前
liyiliyi117完成签到,获得积分10
5秒前
弥生关注了科研通微信公众号
5秒前
6秒前
思源应助笑柳采纳,获得10
7秒前
8秒前
飞云发布了新的文献求助10
9秒前
洋洋完成签到,获得积分10
9秒前
causjz发布了新的文献求助10
10秒前
香蕉觅云应助ZhouKL采纳,获得10
10秒前
12秒前
Akim应助学不动了采纳,获得10
12秒前
Chan发布了新的文献求助10
12秒前
冰冰凉凉彬彬完成签到,获得积分10
13秒前
SciGPT应助causjz采纳,获得10
14秒前
14秒前
研友_VZG7GZ应助起风了采纳,获得10
15秒前
缓慢太君发布了新的文献求助10
15秒前
大模型应助科研狗仔队采纳,获得10
15秒前
祥小哥完成签到,获得积分10
16秒前
思源应助Mialy采纳,获得10
17秒前
无花果应助Solar energy采纳,获得10
17秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3051374
求助须知:如何正确求助?哪些是违规求助? 2708662
关于积分的说明 7413751
捐赠科研通 2352869
什么是DOI,文献DOI怎么找? 1245378
科研通“疑难数据库(出版商)”最低求助积分说明 605633
版权声明 595829