Neural network soil moisture model for irrigation scheduling

灌溉调度 含水量 环境科学 灌溉 土壤科学 土壤水分 水分 农业工程 农学 工程类 气象学 岩土工程 物理 生物
作者
Zhe Gu,Tingting Zhu,Xiyun Jiao,Junzeng Xu,Zhiming Qi
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:180: 105801-105801 被引量:59
标识
DOI:10.1016/j.compag.2020.105801
摘要

Real-time irrigation scheduling systems attempt to eliminate crop water stress and achieve a high yield at harvest through the control of soil moisture. Artificial intelligence algorithms are possibly to learn the soil moisture dynamics in the soil-plant-atmosphere system and then are embedded into a low-cost controller to generate appropriate irrigation schedules. In this study, a neural network (NN) model was proposed to learn from a process-based agricultural systems model, the Root Zone Water Quality Model (RZWQM2) in predicting the root zone soil moisture during the crop growing season. Climatic data, rooting depth and hesternal soil moisture are set as inputs of the NN model to predict intraday soil moisture in different layers. Conditions with and without water supply are modeled separately to achieve a higher accuracy. The NN-based irrigation scheduling method (NN method), triggers irrigation when the predicted soil moisture drops to a level defined by the product of management-allowed depletion multiplied by the depth of available water to plant. Irrigation quantity was set to replenish the root zone soil water content to field capacity. NN method was compared with the reported water stress (WS) method based on RZWQM2. The results reveal that though the constructed NN model well-predicted soil moisture changes during the main crop season with minor errors, but the error was larger at lower soil moisture thereby decreased the scheduling efficiency. An NN ensemble model was tested and shown to improve the precision and robustness of soil moisture prediction as well as the scheduling performance in view of water conservation and yield maintenance. Combined with the NN ensemble model and adjusted lowest soil moisture for triggering irrigations, the NN ensemble-based irrigation scheduling method achieved a performance not better than that of the RZWQM2-WS method but exceeded the method based on evapotranspiration and water balance by up to 20%. The constructed NN ensemble model and NN ensemble-based irrigation scheduling method could act as an alternative to predicting soil moisture and obtaining efficient irrigation scheduling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧书雪完成签到,获得积分10
1秒前
大大怪将军完成签到,获得积分10
2秒前
哈哈哈完成签到 ,获得积分0
2秒前
小怪完成签到,获得积分10
3秒前
爱吃泡芙完成签到,获得积分10
4秒前
白桃战士完成签到,获得积分10
5秒前
7秒前
qingchenwuhou完成签到 ,获得积分10
7秒前
XXX完成签到,获得积分10
8秒前
锡嘻完成签到 ,获得积分10
8秒前
9秒前
彗星入梦完成签到 ,获得积分10
9秒前
恋恋青葡萄完成签到,获得积分10
9秒前
隐形万言完成签到,获得积分10
11秒前
Time完成签到,获得积分10
11秒前
土木研学僧完成签到,获得积分10
12秒前
yjy完成签到 ,获得积分10
12秒前
A溶大美噶完成签到,获得积分10
12秒前
yar应助萨尔莫斯采纳,获得10
13秒前
Will发布了新的文献求助10
13秒前
美好的鹏笑完成签到,获得积分10
15秒前
啦啦啦啦啦完成签到,获得积分10
15秒前
LYegoist完成签到,获得积分10
17秒前
可爱的小丸子完成签到,获得积分10
17秒前
一川烟叶完成签到,获得积分10
19秒前
19秒前
22秒前
iFan完成签到 ,获得积分10
22秒前
萨尔莫斯完成签到,获得积分10
22秒前
合适靖儿完成签到 ,获得积分10
24秒前
林林林完成签到,获得积分10
25秒前
斯琪欣完成签到,获得积分10
26秒前
27秒前
MQQ完成签到 ,获得积分10
27秒前
meng发布了新的文献求助10
27秒前
28秒前
zxc167完成签到,获得积分10
28秒前
研友_nVWP2Z完成签到 ,获得积分10
30秒前
俭朴的半雪完成签到 ,获得积分10
31秒前
大橙子发布了新的文献求助10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022