Neural network soil moisture model for irrigation scheduling

灌溉调度 含水量 环境科学 灌溉 土壤科学 土壤水分 水分 农业工程 农学 工程类 气象学 岩土工程 生物 物理
作者
Zhe Gu,Tingting Zhu,Xiyun Jiao,Junzeng Xu,Zhiming Qi
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:180: 105801-105801 被引量:59
标识
DOI:10.1016/j.compag.2020.105801
摘要

Real-time irrigation scheduling systems attempt to eliminate crop water stress and achieve a high yield at harvest through the control of soil moisture. Artificial intelligence algorithms are possibly to learn the soil moisture dynamics in the soil-plant-atmosphere system and then are embedded into a low-cost controller to generate appropriate irrigation schedules. In this study, a neural network (NN) model was proposed to learn from a process-based agricultural systems model, the Root Zone Water Quality Model (RZWQM2) in predicting the root zone soil moisture during the crop growing season. Climatic data, rooting depth and hesternal soil moisture are set as inputs of the NN model to predict intraday soil moisture in different layers. Conditions with and without water supply are modeled separately to achieve a higher accuracy. The NN-based irrigation scheduling method (NN method), triggers irrigation when the predicted soil moisture drops to a level defined by the product of management-allowed depletion multiplied by the depth of available water to plant. Irrigation quantity was set to replenish the root zone soil water content to field capacity. NN method was compared with the reported water stress (WS) method based on RZWQM2. The results reveal that though the constructed NN model well-predicted soil moisture changes during the main crop season with minor errors, but the error was larger at lower soil moisture thereby decreased the scheduling efficiency. An NN ensemble model was tested and shown to improve the precision and robustness of soil moisture prediction as well as the scheduling performance in view of water conservation and yield maintenance. Combined with the NN ensemble model and adjusted lowest soil moisture for triggering irrigations, the NN ensemble-based irrigation scheduling method achieved a performance not better than that of the RZWQM2-WS method but exceeded the method based on evapotranspiration and water balance by up to 20%. The constructed NN ensemble model and NN ensemble-based irrigation scheduling method could act as an alternative to predicting soil moisture and obtaining efficient irrigation scheduling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
言叶发布了新的文献求助10
4秒前
4秒前
5秒前
liushu发布了新的文献求助10
5秒前
6秒前
FashionBoy应助Shinewei采纳,获得10
6秒前
7秒前
Akim应助笑点低的海云采纳,获得10
9秒前
Lucas应助稳重的青旋采纳,获得10
10秒前
11秒前
砍柴少年发布了新的文献求助10
12秒前
13秒前
14秒前
犹豫觅露应助重要的馒头采纳,获得10
14秒前
领导范儿应助砍柴少年采纳,获得10
17秒前
18秒前
内向的绮山完成签到,获得积分10
21秒前
圆儿完成签到 ,获得积分10
22秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
CipherSage应助顺利寄文采纳,获得10
23秒前
25秒前
27秒前
领导范儿应助黄油屑屑采纳,获得10
27秒前
29秒前
31秒前
32秒前
anna1992发布了新的文献求助10
34秒前
旅行的邱邱子完成签到,获得积分10
36秒前
37秒前
Nick_YFWS发布了新的文献求助10
37秒前
39秒前
42秒前
42秒前
zzzzzz发布了新的文献求助10
43秒前
Owen应助牧百川采纳,获得10
45秒前
46秒前
47秒前
白兔奶糖发布了新的文献求助10
47秒前
WuFen完成签到 ,获得积分10
48秒前
高分求助中
Востребованный временем 2500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391612
求助须知:如何正确求助?哪些是违规求助? 3002669
关于积分的说明 8805010
捐赠科研通 2689301
什么是DOI,文献DOI怎么找? 1473018
科研通“疑难数据库(出版商)”最低求助积分说明 681331
邀请新用户注册赠送积分活动 674200