Automatic Assessment of Depression From Speech via a Hierarchical Attention Transfer Network and Attention Autoencoders

计算机科学 学习迁移 人工智能 机器学习 瓶颈 均方误差 任务(项目管理) 深度学习 重性抑郁障碍 病人健康调查表 语音识别 心理学 焦虑 精神科 抑郁症状 统计 认知 嵌入式系统 经济 管理 数学
作者
Ziping Zhao,Zhongtian Bao,Zixing Zhang,Jun Deng,Nicholas Cummins,Haishuai Wang,Jianhua Tao,Björn Schuller
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:14 (2): 423-434 被引量:57
标识
DOI:10.1109/jstsp.2019.2955012
摘要

Early interventions in mental health conditions such as Major Depressive Disorder (MDD) are critical to improved health outcomes, as they can help reduce the burden of the disease. As the efficient diagnosis of depression severity is therefore highly desirable, the use of behavioural cues such as speech characteristics in diagnosis is attracting increasing interest in the field of quantitative mental health research. However, despite the widespread use of machine learning methods in the depression analysis community, the lack of adequate labelled data has become a bottleneck preventing the broader application of techniques such as deep learning. Accordingly, we herein describe a deep learning approach that combines unsupervised learning, knowledge transfer and hierarchical attention for the task of speech-based depression severity measurement. Our novel approach, a Hierarchical Attention Transfer Network (HATN), uses hierarchical attention autoencoders to learn attention from a source task, followed by speech recognition, and then transfers this knowledge into a depression analysis system. Experiments based on the depression sub-challenge dataset of the Audio/Visual Emotion Challenge (AVEC) 2017 demonstrate the effectiveness of our proposed model. On the test set, our technique outperformed other speech-based systems presented in the literature, achieving a Root Mean Square Error (RMSE) of 5.51 and a Mean Absolute Error (MAE) of 4.20 on a Patient Health Questionnaire (PHQ)-8 scale [0, 24]. To the best of our knowledge, these scores represent the best-known speech results on the AVEC 2017 depression corpus to date.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1ssd发布了新的文献求助10
刚刚
667发布了新的文献求助10
刚刚
小二郎应助辰柒采纳,获得10
1秒前
2秒前
2秒前
clear完成签到,获得积分20
2秒前
2秒前
orixero应助congguitar采纳,获得10
2秒前
Evan完成签到,获得积分10
2秒前
YANG发布了新的文献求助10
3秒前
3秒前
123发布了新的文献求助10
3秒前
sunzhiyu233发布了新的文献求助10
4秒前
Raul完成签到 ,获得积分10
4秒前
4秒前
伯尔尼圆白菜完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
buuyoo完成签到,获得积分10
5秒前
科研通AI5应助魏煜佳采纳,获得10
5秒前
LLxiaolong完成签到,获得积分10
5秒前
6秒前
6秒前
巨噬细胞A完成签到,获得积分10
6秒前
6秒前
我要读博士完成签到 ,获得积分10
6秒前
xxq完成签到,获得积分20
6秒前
福气小姐完成签到 ,获得积分10
6秒前
搜集达人应助jjy采纳,获得10
7秒前
7秒前
郑总完成签到,获得积分10
7秒前
CipherSage应助马尼拉采纳,获得10
7秒前
SCI完成签到 ,获得积分10
8秒前
9秒前
healer发布了新的文献求助10
9秒前
123完成签到,获得积分20
10秒前
李健的小迷弟应助yili采纳,获得10
10秒前
L.完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759