Automatic Assessment of Depression From Speech via a Hierarchical Attention Transfer Network and Attention Autoencoders

计算机科学 学习迁移 人工智能 机器学习 瓶颈 均方误差 任务(项目管理) 深度学习 重性抑郁障碍 病人健康调查表 语音识别 心理学 焦虑 精神科 抑郁症状 统计 认知 数学 管理 经济 嵌入式系统
作者
Ziping Zhao,Zhongtian Bao,Zixing Zhang,Jun Deng,Nicholas Cummins,Haishuai Wang,Jianhua Tao,Björn Schuller
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:14 (2): 423-434 被引量:57
标识
DOI:10.1109/jstsp.2019.2955012
摘要

Early interventions in mental health conditions such as Major Depressive Disorder (MDD) are critical to improved health outcomes, as they can help reduce the burden of the disease. As the efficient diagnosis of depression severity is therefore highly desirable, the use of behavioural cues such as speech characteristics in diagnosis is attracting increasing interest in the field of quantitative mental health research. However, despite the widespread use of machine learning methods in the depression analysis community, the lack of adequate labelled data has become a bottleneck preventing the broader application of techniques such as deep learning. Accordingly, we herein describe a deep learning approach that combines unsupervised learning, knowledge transfer and hierarchical attention for the task of speech-based depression severity measurement. Our novel approach, a Hierarchical Attention Transfer Network (HATN), uses hierarchical attention autoencoders to learn attention from a source task, followed by speech recognition, and then transfers this knowledge into a depression analysis system. Experiments based on the depression sub-challenge dataset of the Audio/Visual Emotion Challenge (AVEC) 2017 demonstrate the effectiveness of our proposed model. On the test set, our technique outperformed other speech-based systems presented in the literature, achieving a Root Mean Square Error (RMSE) of 5.51 and a Mean Absolute Error (MAE) of 4.20 on a Patient Health Questionnaire (PHQ)-8 scale [0, 24]. To the best of our knowledge, these scores represent the best-known speech results on the AVEC 2017 depression corpus to date.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱想想发布了新的文献求助10
1秒前
1秒前
zz发布了新的文献求助100
1秒前
2秒前
情怀应助冷酷严青采纳,获得10
2秒前
sssjjjxx完成签到,获得积分20
2秒前
菜热热完成签到,获得积分10
2秒前
君衡完成签到 ,获得积分10
2秒前
bbbabo发布了新的文献求助10
3秒前
哈哈发布了新的文献求助20
3秒前
dzh完成签到,获得积分10
3秒前
3秒前
再学一分钟完成签到,获得积分10
4秒前
4秒前
4秒前
小呆完成签到 ,获得积分10
4秒前
5秒前
log发布了新的文献求助10
5秒前
5秒前
王老吉完成签到,获得积分10
5秒前
隐形曼青应助杨亚轩采纳,获得10
6秒前
情怀应助fei采纳,获得20
6秒前
星星蘸大酱完成签到,获得积分10
6秒前
Orange应助LLLLL采纳,获得30
6秒前
Jasper应助菠萝采纳,获得10
7秒前
7秒前
7秒前
7秒前
嘟哒哒完成签到,获得积分20
8秒前
8秒前
维克托雷发布了新的文献求助10
8秒前
璃鱼发布了新的文献求助10
8秒前
熙熙发布了新的文献求助10
8秒前
浮游应助lxy采纳,获得10
9秒前
9秒前
9秒前
9秒前
czy完成签到,获得积分10
9秒前
闪闪一斩发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473258
求助须知:如何正确求助?哪些是违规求助? 4575461
关于积分的说明 14352959
捐赠科研通 4503014
什么是DOI,文献DOI怎么找? 2467404
邀请新用户注册赠送积分活动 1455315
关于科研通互助平台的介绍 1429322