Machine Learning based Learning Disability Detection using LMS

计算机科学 人工智能 机器学习 支持向量机 Python(编程语言) 学习管理 逻辑回归 二元分类 自然语言处理 多媒体 操作系统
作者
Masooda Modak,Omkar Warade,G. Saiprasad,Shweta Shekhar
标识
DOI:10.1109/iccca49541.2020.9250761
摘要

This paper highlights an E-learning system created using Moodle which is an open-source Learning Management System (LMS) that enables a better learning environment between the tutors and students. This system detects two learner profiles i.e. students with Learning Disability (LD) and without Learning Disability (Non-LD) using dedicated courses designed on the basis of various aspects of an LD student. This work also multiple stages of our approach for informal testing used to capture the learning parameters for Dyslexic students. The first stage i.e. data collection has two approaches where the first approach pertains to a smaller age group of 8-10 years with limited parameters whereas the second approach pertains to the age group 11-13 years i.e. grades 6-8 with more parameters. Natural Language Processing (NLP) has been used to perform Speech-to-Text (STT) conversion on the audio responses of the users. The analysis of these responses have been performed in python language. To detect whether the user has LD (Dyslexia in this case) or not, Machine Learning (ML) is used. Two ML algorithms namely Logistic Regression (LR) and Support Vector Machine (SVM) are used to perform binary classification with LD (1) and Non-LD (0) as the two classes of the dataset. The results are shown for both the approaches and comparative analysis shows that the dataset generated in the final approach for capturing parameters involving NLP is better and more robust. LR algorithm for ML shows better results as compared to SVM for performing detection based on the generated dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Zuya发布了新的文献求助10
1秒前
1秒前
大个应助zl12采纳,获得20
1秒前
xfwang发布了新的文献求助10
1秒前
清爽玫瑰发布了新的文献求助10
2秒前
2秒前
qll发布了新的文献求助20
2秒前
yatou发布了新的文献求助10
2秒前
帅气的方盒完成签到,获得积分10
2秒前
3秒前
3秒前
Hello应助顺利一德采纳,获得10
3秒前
yznfly应助糖葫芦采纳,获得20
3秒前
大龙哥886发布了新的文献求助10
3秒前
活泼小笼包完成签到,获得积分10
3秒前
4秒前
丘比特应助任性的飞雪采纳,获得10
5秒前
5秒前
Lucas应助12345tty采纳,获得10
5秒前
可爱的函函应助梧桐采纳,获得10
5秒前
王木木完成签到,获得积分10
6秒前
6秒前
cxm666完成签到,获得积分10
6秒前
7秒前
L拉丁是我干死的完成签到,获得积分10
7秒前
AA完成签到,获得积分20
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
奋斗的蓝蜗牛完成签到,获得积分10
8秒前
8秒前
李健的小迷弟应助帅气蓝采纳,获得10
9秒前
Keyl发布了新的文献求助10
9秒前
zl12完成签到,获得积分20
9秒前
10秒前
LUCKY发布了新的文献求助50
10秒前
chenhui发布了新的文献求助10
10秒前
小平发布了新的文献求助10
11秒前
第七个太阳完成签到,获得积分10
11秒前
科研通AI6应助H2SO4采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505663
求助须知:如何正确求助?哪些是违规求助? 4601332
关于积分的说明 14476017
捐赠科研通 4535251
什么是DOI,文献DOI怎么找? 2485257
邀请新用户注册赠送积分活动 1468282
关于科研通互助平台的介绍 1440744