已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning based Learning Disability Detection using LMS

计算机科学 人工智能 机器学习 支持向量机 Python(编程语言) 学习管理 逻辑回归 二元分类 自然语言处理 多媒体 操作系统
作者
Masooda Modak,Omkar Warade,G. Saiprasad,Shweta Shekhar
标识
DOI:10.1109/iccca49541.2020.9250761
摘要

This paper highlights an E-learning system created using Moodle which is an open-source Learning Management System (LMS) that enables a better learning environment between the tutors and students. This system detects two learner profiles i.e. students with Learning Disability (LD) and without Learning Disability (Non-LD) using dedicated courses designed on the basis of various aspects of an LD student. This work also multiple stages of our approach for informal testing used to capture the learning parameters for Dyslexic students. The first stage i.e. data collection has two approaches where the first approach pertains to a smaller age group of 8-10 years with limited parameters whereas the second approach pertains to the age group 11-13 years i.e. grades 6-8 with more parameters. Natural Language Processing (NLP) has been used to perform Speech-to-Text (STT) conversion on the audio responses of the users. The analysis of these responses have been performed in python language. To detect whether the user has LD (Dyslexia in this case) or not, Machine Learning (ML) is used. Two ML algorithms namely Logistic Regression (LR) and Support Vector Machine (SVM) are used to perform binary classification with LD (1) and Non-LD (0) as the two classes of the dataset. The results are shown for both the approaches and comparative analysis shows that the dataset generated in the final approach for capturing parameters involving NLP is better and more robust. LR algorithm for ML shows better results as compared to SVM for performing detection based on the generated dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴滴答发布了新的文献求助10
刚刚
123study0完成签到,获得积分10
2秒前
Ava应助吴未采纳,获得10
2秒前
行走的绅士完成签到,获得积分10
2秒前
jerry完成签到,获得积分10
3秒前
4秒前
PJT417发布了新的文献求助10
4秒前
nn发布了新的文献求助10
5秒前
jerry发布了新的文献求助10
6秒前
orixero应助微笑咖啡豆采纳,获得10
8秒前
XDSH完成签到 ,获得积分10
9秒前
123完成签到,获得积分10
11秒前
shine完成签到,获得积分10
12秒前
顺利顺利完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
Jasper应助yx采纳,获得10
14秒前
PJT417完成签到,获得积分20
15秒前
tuanheqi应助NEKO采纳,获得50
16秒前
有趣的银完成签到,获得积分10
16秒前
飞快的孱完成签到,获得积分10
17秒前
星辰大海应助青竹采纳,获得10
17秒前
萨利发布了新的文献求助10
18秒前
Auralis完成签到 ,获得积分10
19秒前
hhh完成签到,获得积分10
19秒前
拉拉LA发布了新的文献求助10
19秒前
CodeCraft应助yatou采纳,获得10
19秒前
19秒前
Criminology34举报三七求助涉嫌违规
20秒前
老武发布了新的文献求助10
21秒前
淡淡土豆应助huayi采纳,获得10
23秒前
但行好事发布了新的文献求助10
23秒前
24秒前
科研通AI6应助贤惠的大山采纳,获得30
28秒前
sutie完成签到,获得积分10
29秒前
30秒前
31秒前
Criminology34举报哒哒哒求助涉嫌违规
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522356
求助须知:如何正确求助?哪些是违规求助? 4613399
关于积分的说明 14538602
捐赠科研通 4551100
什么是DOI,文献DOI怎么找? 2493968
邀请新用户注册赠送积分活动 1475030
关于科研通互助平台的介绍 1446408