Machine Learning based Learning Disability Detection using LMS

计算机科学 人工智能 机器学习 支持向量机 Python(编程语言) 学习管理 逻辑回归 二元分类 自然语言处理 多媒体 操作系统
作者
Masooda Modak,Omkar Warade,G. Saiprasad,Shweta Shekhar
标识
DOI:10.1109/iccca49541.2020.9250761
摘要

This paper highlights an E-learning system created using Moodle which is an open-source Learning Management System (LMS) that enables a better learning environment between the tutors and students. This system detects two learner profiles i.e. students with Learning Disability (LD) and without Learning Disability (Non-LD) using dedicated courses designed on the basis of various aspects of an LD student. This work also multiple stages of our approach for informal testing used to capture the learning parameters for Dyslexic students. The first stage i.e. data collection has two approaches where the first approach pertains to a smaller age group of 8-10 years with limited parameters whereas the second approach pertains to the age group 11-13 years i.e. grades 6-8 with more parameters. Natural Language Processing (NLP) has been used to perform Speech-to-Text (STT) conversion on the audio responses of the users. The analysis of these responses have been performed in python language. To detect whether the user has LD (Dyslexia in this case) or not, Machine Learning (ML) is used. Two ML algorithms namely Logistic Regression (LR) and Support Vector Machine (SVM) are used to perform binary classification with LD (1) and Non-LD (0) as the two classes of the dataset. The results are shown for both the approaches and comparative analysis shows that the dataset generated in the final approach for capturing parameters involving NLP is better and more robust. LR algorithm for ML shows better results as compared to SVM for performing detection based on the generated dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡轻肝发布了新的文献求助10
刚刚
刚刚
1秒前
livian完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
李健应助王自信采纳,获得10
4秒前
ppll3906发布了新的文献求助10
4秒前
海盐气泡水完成签到,获得积分10
5秒前
阿红完成签到,获得积分10
5秒前
8秒前
感动短靴发布了新的文献求助10
8秒前
8秒前
8秒前
陈文文发布了新的文献求助10
9秒前
龙阔完成签到 ,获得积分10
10秒前
11秒前
阿包完成签到 ,获得积分10
11秒前
酷波er应助爱吃饭的凡凡采纳,获得10
12秒前
小王子发布了新的文献求助10
12秒前
ppll3906完成签到,获得积分10
14秒前
14秒前
爆米花应助Yega采纳,获得10
14秒前
Aven完成签到,获得积分10
16秒前
17秒前
王自信发布了新的文献求助10
17秒前
四不像会麋鹿完成签到 ,获得积分10
18秒前
Brain完成签到 ,获得积分10
19秒前
干净的寒天完成签到,获得积分10
19秒前
AA发布了新的文献求助10
19秒前
Hello应助微笑驳采纳,获得10
21秒前
21秒前
kk完成签到,获得积分20
21秒前
赘婿应助Dilxat采纳,获得10
22秒前
23秒前
陈文文完成签到,获得积分10
24秒前
浩西完成签到 ,获得积分10
24秒前
李爱国应助豆芽爸爸采纳,获得10
25秒前
唠叨的中道完成签到,获得积分10
25秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214498
求助须知:如何正确求助?哪些是违规求助? 2863083
关于积分的说明 8137257
捐赠科研通 2529341
什么是DOI,文献DOI怎么找? 1363623
科研通“疑难数据库(出版商)”最低求助积分说明 643860
邀请新用户注册赠送积分活动 616394