Machine Learning based Learning Disability Detection using LMS

计算机科学 人工智能 机器学习 支持向量机 Python(编程语言) 学习管理 逻辑回归 二元分类 自然语言处理 多媒体 操作系统
作者
Masooda Modak,Omkar Warade,G. Saiprasad,Shweta Shekhar
标识
DOI:10.1109/iccca49541.2020.9250761
摘要

This paper highlights an E-learning system created using Moodle which is an open-source Learning Management System (LMS) that enables a better learning environment between the tutors and students. This system detects two learner profiles i.e. students with Learning Disability (LD) and without Learning Disability (Non-LD) using dedicated courses designed on the basis of various aspects of an LD student. This work also multiple stages of our approach for informal testing used to capture the learning parameters for Dyslexic students. The first stage i.e. data collection has two approaches where the first approach pertains to a smaller age group of 8-10 years with limited parameters whereas the second approach pertains to the age group 11-13 years i.e. grades 6-8 with more parameters. Natural Language Processing (NLP) has been used to perform Speech-to-Text (STT) conversion on the audio responses of the users. The analysis of these responses have been performed in python language. To detect whether the user has LD (Dyslexia in this case) or not, Machine Learning (ML) is used. Two ML algorithms namely Logistic Regression (LR) and Support Vector Machine (SVM) are used to perform binary classification with LD (1) and Non-LD (0) as the two classes of the dataset. The results are shown for both the approaches and comparative analysis shows that the dataset generated in the final approach for capturing parameters involving NLP is better and more robust. LR algorithm for ML shows better results as compared to SVM for performing detection based on the generated dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Cheng采纳,获得10
刚刚
2秒前
烟花应助科研通管家采纳,获得10
5秒前
ccm应助科研通管家采纳,获得150
5秒前
GPTea应助科研通管家采纳,获得150
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
炼丹师应助科研通管家采纳,获得20
5秒前
Tourist应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
科目三应助科研通管家采纳,获得10
6秒前
一叶知秋应助科研通管家采纳,获得10
6秒前
ccm应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
情怀应助科研通管家采纳,获得30
6秒前
李爱国应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得30
7秒前
7秒前
一叶知秋应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
dy1994完成签到,获得积分10
8秒前
科研通AI5应助jy采纳,获得10
10秒前
乡乡发布了新的文献求助10
10秒前
11秒前
负责的烨霖完成签到,获得积分20
11秒前
阿伟完成签到,获得积分10
12秒前
努力向前看完成签到,获得积分10
12秒前
14秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5134322
求助须知:如何正确求助?哪些是违规求助? 4335087
关于积分的说明 13505951
捐赠科研通 4172482
什么是DOI,文献DOI怎么找? 2287697
邀请新用户注册赠送积分活动 1288658
关于科研通互助平台的介绍 1229444