A practical method superior to traditional spectral identification: Two-dimensional correlation spectroscopy combined with deep learning to identify Paris species

模式识别(心理学) 线性判别分析 化学计量学 光谱学 支持向量机 鉴定(生物学) 主成分分析 生物系统 高光谱成像 谱线 偏最小二乘回归 机器学习 光谱分析
作者
JiaQi Yue,Heng-Yu Huang,Yuan-Zhong Wang
出处
期刊:Microchemical Journal [Elsevier]
卷期号:160: 105731- 被引量:11
标识
DOI:10.1016/j.microc.2020.105731
摘要

Abstract Spectral analysis has the characteristics of fast and nondestructive. In order to conform to the development of the times, a practical method beyond the traditional spectral analysis was established. For the first time, the two-dimensional correlation spectroscopy (2DCOS) images of Fourier-transform mid-infrared spectroscopy combined with the Residual Neural Network (ResNet) was used for the identification and analysis of 12 Paris species, and the second derivative 2DCOS rarely involved in previous researchers was established. Besides, the fusion strategy of 2DCOS images based on feature bands was first proposed for modeling analysis. From the results, (1) 2DCOS combined with ResNet can successfully identify 12 Paris species. (2) 2DCOS is a powerful tool for identification, whether it is used for image visual analysis or modeling analysis. (3) Compared with asynchronous 2DCOS, synchronous 2DCOS is more suitable for the identification and analysis of complex mixed systems such as traditional Chinese medicine. (4) The modeling based on feature bands fusion strategy of 2DCOS has better model performance and is also suitable for the analysis of small samples. To sum up, what we proposed is an innovative and feasible method with wide applicability, which can not only solve the problem of identifying Paris, provide ideas and methods for the selection of spectral types and feature bands, but also provide practical reference for the research in analytical chemistry and other related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助领衔采纳,获得10
1秒前
温柔飞瑶2完成签到,获得积分10
1秒前
安德鲁森完成签到 ,获得积分10
1秒前
乐乐应助Anonyme采纳,获得10
2秒前
2秒前
莫归尘发布了新的文献求助10
3秒前
QQQQ完成签到 ,获得积分20
4秒前
乐乐应助纥江采纳,获得10
4秒前
sorato完成签到,获得积分10
5秒前
桐桐应助小会采纳,获得10
6秒前
思源应助taotie采纳,获得10
6秒前
平淡惋清发布了新的文献求助10
6秒前
NexusExplorer应助呆呆小猪采纳,获得10
6秒前
领衔完成签到,获得积分20
6秒前
LUZIYI发布了新的文献求助10
7秒前
Xiaoshen发布了新的文献求助10
7秒前
顺心飞雪完成签到,获得积分10
7秒前
FashionBoy应助伈X采纳,获得10
8秒前
万能图书馆应助Flemyng采纳,获得10
8秒前
司徒元瑶完成签到 ,获得积分10
8秒前
莫归尘完成签到,获得积分10
9秒前
9秒前
研友_Z1eDgZ发布了新的文献求助10
9秒前
Lucas应助乐闻采纳,获得10
9秒前
10秒前
何不食肉糜完成签到 ,获得积分10
10秒前
我是老大应助小陈采纳,获得25
12秒前
深情安青应助999采纳,获得10
12秒前
12秒前
12秒前
12秒前
NexusExplorer应助怕黑的凝旋采纳,获得10
13秒前
shelemi发布了新的文献求助10
13秒前
14秒前
痴情的寒云完成签到 ,获得积分10
14秒前
LUZIYI完成签到,获得积分20
14秒前
15秒前
15秒前
我是老大应助迷人世开采纳,获得10
15秒前
封闭货车发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼,英文版即可,因为没有中文版。 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156631
求助须知:如何正确求助?哪些是违规求助? 2808058
关于积分的说明 7876045
捐赠科研通 2466421
什么是DOI,文献DOI怎么找? 1312876
科研通“疑难数据库(出版商)”最低求助积分说明 630299
版权声明 601919