Interaction of carbon nanotubes with curcumin: Effect of temperature and pH on simultaneous static and dynamic fluorescence quenching of curcumin using carbon nanotubes

猝灭(荧光) 姜黄素 碳纳米管 光化学 荧光 脱质子化 化学 水溶液 傅里叶变换红外光谱 分子 溶解度 吸收(声学) 吸收光谱法 疏水效应 化学工程 材料科学 有机化学 离子 纳米技术 复合材料 工程类 物理 量子力学 生物化学
作者
Lucia Youssef,Digambara Patra
出处
期刊:Luminescence [Wiley]
卷期号:35 (5): 659-666 被引量:9
标识
DOI:10.1002/bio.3770
摘要

Abstract Curcumin (Cur) has medicinal properties, undergoes hydrolysis, and has low water solubility that limits its bioavailability and industrial usage. Different host molecules such as carbon nanotubes (CNT) can be useful in improving solubility and stabilizing Cur, therefore understanding the interaction of Cur with host molecules such as CNT is crucial. In this study, UV–visible light absorption and fluorescence spectroscopic techniques have been applied to reveal the interaction of Cur with CNT. Visible light absorption of Cur increases with CNT concentration, whereas fluorescence intensity of Cur is quenched in the presence of CNT. The obtained results confirm that fluorescence reduction is due to both static and dynamic quenching and is a result of the ground state and excited‐state complex formation. The pH environment influences the quenching rate due to deprotonation of Cur at higher pH; excess OH‐ ion concentration in the solution further discourages electrostatic interaction between the deprotonated form of Cur with CNT. It is found that at lower temperatures (<35°C) dynamic quenching is much more dominant and at higher temperatures (45°C) static quenching is more dominant. The interaction is further supported using X‐ray diffraction patterns and Fourier transform infrared spectra in the solid state, and suggests encapsulation of curcumin within the CNT. It is further evident that fluorescence quenching of Cur using CNT is further enhanced in the presence of several salts, as increase in ionic strength of the solution pushes the hydrophobic Cur molecule towards the CNT core by increasing the proximity between them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐呀完成签到,获得积分10
刚刚
木头人呐完成签到 ,获得积分10
刚刚
小马甲应助吴岳采纳,获得10
刚刚
天天向上赶完成签到,获得积分10
刚刚
整齐的凡梦完成签到,获得积分10
1秒前
孙冉冉发布了新的文献求助10
2秒前
MHB应助towerman采纳,获得10
3秒前
Dean发布了新的文献求助10
3秒前
4秒前
加油加油发布了新的文献求助10
4秒前
lili完成签到 ,获得积分10
5秒前
文剑武书生完成签到,获得积分10
6秒前
科研通AI5应助无限鞅采纳,获得10
6秒前
6秒前
852应助木棉采纳,获得10
6秒前
7秒前
卓哥完成签到,获得积分10
8秒前
9秒前
Agan发布了新的文献求助10
9秒前
9秒前
10秒前
morlison发布了新的文献求助10
10秒前
科研通AI5应助金色年华采纳,获得10
12秒前
充电宝应助kh453采纳,获得10
12秒前
正经俠发布了新的文献求助10
12秒前
一衣发布了新的文献求助20
13秒前
可爱的函函应助药学牛马采纳,获得10
13秒前
XM发布了新的文献求助10
13秒前
专注之双完成签到,获得积分10
14秒前
SciGPT应助十一采纳,获得10
14秒前
14秒前
A1234完成签到,获得积分10
15秒前
刘铭晨发布了新的文献求助10
16秒前
孙冉冉完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
大模型应助hhzz采纳,获得10
21秒前
一只智慧喵完成签到,获得积分10
21秒前
科目三应助Fundamental采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808