Strain direction dependency of deformation mechanisms in an HCP-Ti crystalline by molecular dynamics simulations

晶体孪晶 材料科学 打滑(空气动力学) 极限抗拉强度 部分位错 结晶学 分子动力学 透射电子显微镜 变形(气象学) 等球密排 相(物质) 位错 凝聚态物理 复合材料 微观结构 化学 纳米技术 热力学 物理 计算化学 有机化学
作者
Hao Zhang,Xiaoqin Ou,Bingqiang Wei,Song Ni,Min Song
出处
期刊:Computational Materials Science [Elsevier]
卷期号:172: 109328-109328 被引量:43
标识
DOI:10.1016/j.commatsci.2019.109328
摘要

In this work, effects of uniaxial tensile directions on the deformation mechanisms of a hexagonal close-packed (HCP) titanium crystalline were investigated by molecular dynamics simulations. Three uniaxial tensile directions, namely the [21-1-0], [011-0] and [0001] directions, were studied. When the tensile loading was along the [21-1-0] direction, the parent HCP phase transformed firstly into the body-centered cubic (BCC) phase following the Pitsch-Schrader orientation relationship (OR), and then transformed either into the face-centered cubic (FCC) phase following the Bain path or back to the HCP phase following different variants of the Pitsch-Schrader OR. The new-forming and matrix HCP structures were in a {101-1} twinning relationship with each other. The newly formed FCC phase was in a prismatic-type (P-type) OR with the HCP matrix and in a basal-type (B-type) relationship with the new-forming HCP structure at individual contacting interface. The FCC/HCP interfaces in the P-type OR was immobile while that in the B-type OR propagated by the slip of Shockley partial dislocations. Both FCC/HCP interfaces in the P-type and B-type ORs were observed under high-resolution transmission electron microscope. With the tensile loading along the [011-0] direction, deformation mechanism of the system was dominated by the slip and dissociation of prismatic dislocations. The system stretched along the [0001] direction deformed mainly through the slip and dissociation of pyramidal dislocations, as well as through the activation of {101-2} twinning by a pure shuffle mechanism. The present investigation can provide clues in designing titanium alloys with both high strength and good plasticity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
凌云完成签到,获得积分10
1秒前
wweiweili完成签到 ,获得积分10
1秒前
Nancy完成签到,获得积分10
1秒前
小王小王发布了新的文献求助10
1秒前
时空路人发布了新的文献求助10
2秒前
3秒前
仁爱糖豆发布了新的文献求助10
3秒前
楠楠完成签到,获得积分10
4秒前
充电宝应助谦让的小龙采纳,获得10
5秒前
5秒前
WRZ完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
香蕉觅云应助张于小丸子采纳,获得10
6秒前
Ava应助HUSHIYI采纳,获得10
6秒前
彭于晏应助coffee采纳,获得10
6秒前
超级的路人完成签到,获得积分20
7秒前
子清发布了新的文献求助30
7秒前
7秒前
完美世界应助简单幸福采纳,获得20
8秒前
zhaxiao完成签到,获得积分10
9秒前
10秒前
韩小青完成签到,获得积分10
10秒前
10秒前
11秒前
Shelly发布了新的文献求助30
11秒前
Chaoya完成签到,获得积分10
12秒前
七月夏栀完成签到,获得积分10
12秒前
blame完成签到,获得积分10
12秒前
寒冷书兰发布了新的文献求助10
12秒前
科研通AI6应助核桃采纳,获得10
13秒前
千暮完成签到,获得积分10
13秒前
DengJJJ完成签到,获得积分10
13秒前
14秒前
简单发布了新的文献求助10
14秒前
科研通AI6应助Liyiheng采纳,获得10
14秒前
15秒前
jiojioya发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419193
求助须知:如何正确求助?哪些是违规求助? 4534612
关于积分的说明 14145618
捐赠科研通 4451091
什么是DOI,文献DOI怎么找? 2441538
邀请新用户注册赠送积分活动 1433211
关于科研通互助平台的介绍 1410533