Strain direction dependency of deformation mechanisms in an HCP-Ti crystalline by molecular dynamics simulations

晶体孪晶 材料科学 打滑(空气动力学) 极限抗拉强度 部分位错 结晶学 分子动力学 透射电子显微镜 变形(气象学) 等球密排 相(物质) 位错 凝聚态物理 复合材料 微观结构 化学 纳米技术 热力学 物理 计算化学 有机化学
作者
Hao Zhang,Xiaoqin Ou,Bingqiang Wei,Song Ni,Min Song
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:172: 109328-109328 被引量:43
标识
DOI:10.1016/j.commatsci.2019.109328
摘要

In this work, effects of uniaxial tensile directions on the deformation mechanisms of a hexagonal close-packed (HCP) titanium crystalline were investigated by molecular dynamics simulations. Three uniaxial tensile directions, namely the [21-1-0], [011-0] and [0001] directions, were studied. When the tensile loading was along the [21-1-0] direction, the parent HCP phase transformed firstly into the body-centered cubic (BCC) phase following the Pitsch-Schrader orientation relationship (OR), and then transformed either into the face-centered cubic (FCC) phase following the Bain path or back to the HCP phase following different variants of the Pitsch-Schrader OR. The new-forming and matrix HCP structures were in a {101-1} twinning relationship with each other. The newly formed FCC phase was in a prismatic-type (P-type) OR with the HCP matrix and in a basal-type (B-type) relationship with the new-forming HCP structure at individual contacting interface. The FCC/HCP interfaces in the P-type OR was immobile while that in the B-type OR propagated by the slip of Shockley partial dislocations. Both FCC/HCP interfaces in the P-type and B-type ORs were observed under high-resolution transmission electron microscope. With the tensile loading along the [011-0] direction, deformation mechanism of the system was dominated by the slip and dissociation of prismatic dislocations. The system stretched along the [0001] direction deformed mainly through the slip and dissociation of pyramidal dislocations, as well as through the activation of {101-2} twinning by a pure shuffle mechanism. The present investigation can provide clues in designing titanium alloys with both high strength and good plasticity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助yaco采纳,获得10
刚刚
GaoChenxi发布了新的文献求助10
1秒前
1秒前
小橘完成签到,获得积分10
1秒前
林大侠完成签到,获得积分10
1秒前
1秒前
wanci应助Elesis采纳,获得10
1秒前
璇213完成签到,获得积分20
2秒前
Hello应助galaxy采纳,获得10
2秒前
独特的姝完成签到,获得积分10
2秒前
田小冉完成签到,获得积分10
3秒前
4秒前
5秒前
lw777完成签到,获得积分10
5秒前
xiao发布了新的文献求助10
5秒前
ZYTX发布了新的文献求助10
5秒前
6秒前
慕青应助顾化蛹采纳,获得10
6秒前
6秒前
6秒前
彭于晏应助TongXia采纳,获得10
7秒前
7秒前
jin发布了新的文献求助10
8秒前
9秒前
满意涵梅完成签到 ,获得积分10
9秒前
Spidyyy完成签到 ,获得积分10
10秒前
畅快一一完成签到,获得积分20
10秒前
WUWU2435发布了新的文献求助10
11秒前
任_发布了新的文献求助30
11秒前
12秒前
12秒前
科研通AI5应助。。。采纳,获得10
12秒前
慕青应助刻苦的晓蕾采纳,获得10
12秒前
WDL完成签到,获得积分10
13秒前
123456发布了新的文献求助10
14秒前
阿桁完成签到,获得积分10
14秒前
香蕉牛奶发布了新的文献求助10
14秒前
zxp完成签到,获得积分10
15秒前
橘子秋z完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109850
求助须知:如何正确求助?哪些是违规求助? 4318475
关于积分的说明 13454352
捐赠科研通 4148445
什么是DOI,文献DOI怎么找? 2273185
邀请新用户注册赠送积分活动 1275349
关于科研通互助平台的介绍 1213641