Convolution Neural Network-Based Prediction of Protein Thermostability

热稳定性 突变 计算机科学 生物系统 计算生物学 突变体 数学 生物 生物化学 基因
作者
Xingrong Fang,Jinsha Huang,Rui Zhang,Fei Wang,Qiuyu Zhang,Guanlin Li,Jinyong Yan,Houjin Zhang,Yunjun Yan,Li Xu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (11): 4833-4843 被引量:19
标识
DOI:10.1021/acs.jcim.9b00220
摘要

Most natural proteins exhibit poor thermostability, which limits their industrial application. Computer-aided rational design is an efficient purpose-oriented method that can improve protein thermostability. Numerous machine-learning-based methods have been designed to predict the changes in protein thermostability induced by mutations. However, all of these methods have certain limitations due to existing mutation coding methods that overlook protein sequence features. Here we propose a method to predict protein thermostability using convolutional neural networks based on an in-depth study of thermostability-related protein properties. This method comprises a three-dimensional coding algorithm, including protein mutation information and a strategy to extract neighboring features at protein mutation sites based on multiscale convolution. The accuracies on the S1615 and S388 data sets, which are widely used for protein thermostability predictions, reached 86.4 and 87%, respectively. The Matthews correlation coefficient was nearly double those produced using other methods. Furthermore, a model was constructed to predict the thermostability of Rhizomucor miehei lipase mutants based on the S3661 data set, a single amino acid mutation data set screened from the ProTherm protein thermodynamics database. Compared with the RIF strategy, which consists of three algorithms, i.e., Rosetta ddg monomer, I Mutant 3.0, and FoldX, the accuracy of the proposed method was higher (75.0 vs 66.7%), and the negative sample resolution was simultaneously enhanced. These results indicate that our prediction method more effectively assessed the protein thermostability and distinguished its features, making it a powerful tool to devise mutations that enhance the thermostability of proteins, particularly enzymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助任我行采纳,获得10
2秒前
迷路曼青完成签到,获得积分10
2秒前
2秒前
平安喜乐发布了新的文献求助10
3秒前
4秒前
英俊的铭应助芬栀采纳,获得10
4秒前
鲁大师发布了新的文献求助10
4秒前
111应助akiyy采纳,获得10
6秒前
GGbond发布了新的文献求助10
6秒前
孤独的匕发布了新的文献求助10
7秒前
大模型应助optical采纳,获得10
8秒前
ding应助Cris采纳,获得10
8秒前
hahaha完成签到,获得积分10
8秒前
8秒前
不安青牛举报Tasia求助涉嫌违规
9秒前
9秒前
田様应助懒懒大王采纳,获得10
9秒前
大个应助火山采纳,获得10
10秒前
11秒前
研友_VZG7GZ应助Bodhicia采纳,获得10
13秒前
奋斗大葡萄完成签到,获得积分10
13秒前
研友_8RyB3Z应助科研傻子采纳,获得10
13秒前
小小郭完成签到,获得积分10
14秒前
15秒前
LARS发布了新的文献求助10
17秒前
犇骉完成签到,获得积分10
17秒前
猜猜我是谁完成签到,获得积分10
17秒前
Capybara发布了新的文献求助10
18秒前
gty发布了新的文献求助10
18秒前
可爱半凡完成签到,获得积分10
18秒前
19秒前
任我行发布了新的文献求助10
19秒前
英俊的铭应助勤奋的灵松采纳,获得10
20秒前
21秒前
烫烫烫完成签到,获得积分10
22秒前
不安青牛应助科研通管家采纳,获得30
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
Ava应助孤岛飞鹰采纳,获得10
22秒前
22秒前
从容芮应助科研通管家采纳,获得10
22秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158072
求助须知:如何正确求助?哪些是违规求助? 2809436
关于积分的说明 7881999
捐赠科研通 2467898
什么是DOI,文献DOI怎么找? 1313783
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943