Convolution Neural Network-Based Prediction of Protein Thermostability

热稳定性 突变 计算机科学 生物系统 计算生物学 突变体 数学 生物 生物化学 基因
作者
Xingrong Fang,Jinsha Huang,Rui Zhang,Fei Wang,Qiuyu Zhang,Guanlin Li,Jinyong Yan,Houjin Zhang,Yunjun Yan,Li Xu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (11): 4833-4843 被引量:30
标识
DOI:10.1021/acs.jcim.9b00220
摘要

Most natural proteins exhibit poor thermostability, which limits their industrial application. Computer-aided rational design is an efficient purpose-oriented method that can improve protein thermostability. Numerous machine-learning-based methods have been designed to predict the changes in protein thermostability induced by mutations. However, all of these methods have certain limitations due to existing mutation coding methods that overlook protein sequence features. Here we propose a method to predict protein thermostability using convolutional neural networks based on an in-depth study of thermostability-related protein properties. This method comprises a three-dimensional coding algorithm, including protein mutation information and a strategy to extract neighboring features at protein mutation sites based on multiscale convolution. The accuracies on the S1615 and S388 data sets, which are widely used for protein thermostability predictions, reached 86.4 and 87%, respectively. The Matthews correlation coefficient was nearly double those produced using other methods. Furthermore, a model was constructed to predict the thermostability of Rhizomucor miehei lipase mutants based on the S3661 data set, a single amino acid mutation data set screened from the ProTherm protein thermodynamics database. Compared with the RIF strategy, which consists of three algorithms, i.e., Rosetta ddg monomer, I Mutant 3.0, and FoldX, the accuracy of the proposed method was higher (75.0 vs 66.7%), and the negative sample resolution was simultaneously enhanced. These results indicate that our prediction method more effectively assessed the protein thermostability and distinguished its features, making it a powerful tool to devise mutations that enhance the thermostability of proteins, particularly enzymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
vive999发布了新的文献求助10
4秒前
二月发布了新的文献求助30
5秒前
5秒前
Twilight发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
高枕无忧完成签到 ,获得积分10
6秒前
12秒前
Twilight完成签到,获得积分20
12秒前
王祥坤完成签到,获得积分10
12秒前
哈哈发布了新的文献求助10
13秒前
13秒前
不安的嘉懿完成签到,获得积分10
15秒前
王祥坤发布了新的文献求助10
17秒前
Blanca发布了新的文献求助30
18秒前
20秒前
21秒前
21秒前
逍遥猪皮完成签到,获得积分10
23秒前
开心的绿凝完成签到,获得积分10
24秒前
24秒前
轻松板栗完成签到,获得积分10
25秒前
李月月给李月月的求助进行了留言
26秒前
姜jiang发布了新的文献求助10
26秒前
27秒前
木木木发布了新的文献求助10
27秒前
27秒前
梅竹发布了新的文献求助10
27秒前
菜菜发布了新的文献求助10
28秒前
明月完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
陈123发布了新的文献求助10
31秒前
32秒前
yym996完成签到 ,获得积分10
32秒前
张钊于给张钊于的求助进行了留言
33秒前
星辰大海应助木木木采纳,获得10
33秒前
kio发布了新的文献求助10
35秒前
随机的都是啥昵称完成签到 ,获得积分10
37秒前
菜菜完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465550
求助须知:如何正确求助?哪些是违规求助? 4569781
关于积分的说明 14321124
捐赠科研通 4496282
什么是DOI,文献DOI怎么找? 2463209
邀请新用户注册赠送积分活动 1452179
关于科研通互助平台的介绍 1427336