Convolution Neural Network-Based Prediction of Protein Thermostability

热稳定性 突变 计算机科学 生物系统 计算生物学 突变体 数学 生物 生物化学 基因
作者
Xingrong Fang,Jinsha Huang,Rui Zhang,Fei Wang,Qiuyu Zhang,Guanlin Li,Jinyong Yan,Houjin Zhang,Yunjun Yan,Li Xu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (11): 4833-4843 被引量:26
标识
DOI:10.1021/acs.jcim.9b00220
摘要

Most natural proteins exhibit poor thermostability, which limits their industrial application. Computer-aided rational design is an efficient purpose-oriented method that can improve protein thermostability. Numerous machine-learning-based methods have been designed to predict the changes in protein thermostability induced by mutations. However, all of these methods have certain limitations due to existing mutation coding methods that overlook protein sequence features. Here we propose a method to predict protein thermostability using convolutional neural networks based on an in-depth study of thermostability-related protein properties. This method comprises a three-dimensional coding algorithm, including protein mutation information and a strategy to extract neighboring features at protein mutation sites based on multiscale convolution. The accuracies on the S1615 and S388 data sets, which are widely used for protein thermostability predictions, reached 86.4 and 87%, respectively. The Matthews correlation coefficient was nearly double those produced using other methods. Furthermore, a model was constructed to predict the thermostability of Rhizomucor miehei lipase mutants based on the S3661 data set, a single amino acid mutation data set screened from the ProTherm protein thermodynamics database. Compared with the RIF strategy, which consists of three algorithms, i.e., Rosetta ddg monomer, I Mutant 3.0, and FoldX, the accuracy of the proposed method was higher (75.0 vs 66.7%), and the negative sample resolution was simultaneously enhanced. These results indicate that our prediction method more effectively assessed the protein thermostability and distinguished its features, making it a powerful tool to devise mutations that enhance the thermostability of proteins, particularly enzymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助zzzzz采纳,获得10
1秒前
丹妮完成签到 ,获得积分10
2秒前
迷路冰兰发布了新的文献求助10
3秒前
苗条的成仁完成签到 ,获得积分20
5秒前
完美的从波完成签到,获得积分10
5秒前
Money完成签到,获得积分10
5秒前
英姑应助YuJianQiao采纳,获得10
5秒前
糯米鸡发布了新的文献求助10
5秒前
Jasper应助庾新竹采纳,获得10
6秒前
li完成签到,获得积分10
6秒前
7秒前
一期一会完成签到,获得积分10
9秒前
迷路冰兰完成签到,获得积分10
10秒前
香蕉觅云应助liupidanqiu采纳,获得10
12秒前
SYLH应助Money采纳,获得10
13秒前
lixingl发布了新的文献求助10
13秒前
李健的小迷弟应助zjq采纳,获得30
13秒前
13秒前
14秒前
14秒前
zzzzz完成签到,获得积分10
15秒前
小西发布了新的文献求助10
15秒前
慕青应助糯米鸡采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
CipherSage应助丁真真采纳,获得10
16秒前
16秒前
失眠依珊发布了新的文献求助10
17秒前
LUK_发布了新的文献求助10
18秒前
SzyAzns发布了新的文献求助30
18秒前
钰宁完成签到,获得积分10
19秒前
19秒前
学术纣王发布了新的文献求助10
20秒前
朱光辉完成签到,获得积分10
22秒前
23秒前
liupidanqiu发布了新的文献求助10
25秒前
25秒前
Owen应助lzc采纳,获得10
26秒前
Akim应助小太阳采纳,获得10
26秒前
ocean发布了新的文献求助10
27秒前
大模型应助qqq采纳,获得10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505933
关于积分的说明 11126932
捐赠科研通 3237900
什么是DOI,文献DOI怎么找? 1789404
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802976