Nomogram for Early Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using Dynamic Contrast-enhanced and Diffusion-weighted MRI

医学 队列 单变量 逻辑回归 磁共振弥散成像 接收机工作特性 乳腺癌 单变量分析 列线图 放射科 动态增强MRI 磁共振成像 内科学 有效扩散系数 肿瘤科 癌症 核医学 乳房磁振造影 多元分析 多元统计 统计 乳腺摄影术 数学
作者
Rui Zhao,Hong Lu,Yanbo Li,Zhenzhen Shao,Wenjuan Ma,Peifang Liu
出处
期刊:Academic Radiology [Elsevier]
卷期号:29: S155-S163 被引量:23
标识
DOI:10.1016/j.acra.2021.01.023
摘要

The study investigated the potential of the combined use of dynamic contrast-enhanced MRI and diffusion-weighted imaging in predicting the pathological complete response (pCR) of neoadjuvant chemotherapy (NAC) after two cycles of NAC.Eighty-seven patients with breast cancer who underwent MR examination before and after two cycles of NAC were enrolled. The patients were randomly assigned to a training cohort and a validation cohort (3:1 ratio). MRI parameters including tumor longest diameter, time-signal intensity curve, early enhanced ratio (E90), maximal enhanced ratio and ADC value were measured, and percentage change in MRI parameters were calculated. Univariate analysis and multivariate logistic regression analysis were used to evaluate independent predictors of pCR in the training cohort. The validation cohort was used to test the prediction model, and the nomogram was created based on the prediction model.This study demonstrated that the ADC value after two cycles of NAC (OR = 1.041, 95% CI (1.002, 1.081); p = 0.037), percentage decrease in E90 (OR = 0.927, 95% CI (0.881, 0.977); p =0.004) and percentage decrease in tumor size (OR = 0.948, 95% CI (0.909, 0.988); p = 0.011) were significantly important for independently predicting pCR. The prediction model yielded AUC of 0.939 and 0.944 in the training cohort and the validation cohort, respectively.The combined use of dynamic contrast-enhanced MRI and diffusion-weighted imaging could accurately predict pCR after two cycles of NAC. The prediction model and the nomogram had strong predictive value to NAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
春夏爱科研完成签到,获得积分10
刚刚
Yidie发布了新的文献求助10
1秒前
1秒前
chengyu应助lhm采纳,获得10
2秒前
丘比特应助童绾绾采纳,获得10
3秒前
量子星尘发布了新的文献求助10
6秒前
传奇3应助拘留所采纳,获得10
6秒前
小爱同学发布了新的文献求助10
6秒前
怜然完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
9秒前
9秒前
10秒前
星辰大海应助民网采纳,获得10
10秒前
咋咋发布了新的文献求助10
10秒前
顾矜应助mxy采纳,获得10
11秒前
飘逸的狗发布了新的文献求助10
11秒前
852应助zz桓桓采纳,获得10
12秒前
13秒前
Ava应助主手的麻衣采纳,获得10
14秒前
15秒前
16秒前
现代书雪发布了新的文献求助10
16秒前
勇敢牛牛发布了新的文献求助10
16秒前
酌鹿发布了新的文献求助10
16秒前
Ziven完成签到,获得积分10
16秒前
17秒前
天真三问给天真三问的求助进行了留言
17秒前
wys3712发布了新的文献求助20
17秒前
18秒前
HYLynn完成签到,获得积分10
18秒前
Orange应助天真枫采纳,获得10
19秒前
19秒前
MchemG应助贝贝采纳,获得20
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213