Nomogram for Early Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using Dynamic Contrast-enhanced and Diffusion-weighted MRI

医学 队列 单变量 逻辑回归 磁共振弥散成像 接收机工作特性 乳腺癌 单变量分析 列线图 放射科 动态增强MRI 磁共振成像 内科学 有效扩散系数 肿瘤科 癌症 核医学 乳房磁振造影 多元分析 多元统计 统计 乳腺摄影术 数学
作者
Rui Zhao,Hong Lu,Yanbo Li,Zhenzhen Shao,Wenjuan Ma,Peifang Liu
出处
期刊:Academic Radiology [Elsevier]
卷期号:29: S155-S163 被引量:17
标识
DOI:10.1016/j.acra.2021.01.023
摘要

The study investigated the potential of the combined use of dynamic contrast-enhanced MRI and diffusion-weighted imaging in predicting the pathological complete response (pCR) of neoadjuvant chemotherapy (NAC) after two cycles of NAC.Eighty-seven patients with breast cancer who underwent MR examination before and after two cycles of NAC were enrolled. The patients were randomly assigned to a training cohort and a validation cohort (3:1 ratio). MRI parameters including tumor longest diameter, time-signal intensity curve, early enhanced ratio (E90), maximal enhanced ratio and ADC value were measured, and percentage change in MRI parameters were calculated. Univariate analysis and multivariate logistic regression analysis were used to evaluate independent predictors of pCR in the training cohort. The validation cohort was used to test the prediction model, and the nomogram was created based on the prediction model.This study demonstrated that the ADC value after two cycles of NAC (OR = 1.041, 95% CI (1.002, 1.081); p = 0.037), percentage decrease in E90 (OR = 0.927, 95% CI (0.881, 0.977); p =0.004) and percentage decrease in tumor size (OR = 0.948, 95% CI (0.909, 0.988); p = 0.011) were significantly important for independently predicting pCR. The prediction model yielded AUC of 0.939 and 0.944 in the training cohort and the validation cohort, respectively.The combined use of dynamic contrast-enhanced MRI and diffusion-weighted imaging could accurately predict pCR after two cycles of NAC. The prediction model and the nomogram had strong predictive value to NAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
苏鱼完成签到 ,获得积分10
1秒前
恋空完成签到 ,获得积分10
1秒前
曲终人散完成签到,获得积分10
2秒前
wu发布了新的文献求助10
2秒前
wintercyan完成签到,获得积分10
2秒前
4秒前
4秒前
妮儿发布了新的文献求助10
4秒前
4秒前
MADKAI发布了新的文献求助10
5秒前
insane完成签到,获得积分10
5秒前
云儿发布了新的文献求助20
5秒前
Jasper应助哲999采纳,获得10
5秒前
wanci应助拟拟采纳,获得10
6秒前
王超超完成签到,获得积分10
6秒前
6秒前
圈圈发布了新的文献求助10
7秒前
狼来了aas完成签到,获得积分10
7秒前
7秒前
大胆的莛发布了新的文献求助10
8秒前
文静的信封完成签到,获得积分10
8秒前
CipherSage应助wu采纳,获得10
8秒前
科目三应助震666采纳,获得30
8秒前
April发布了新的文献求助10
9秒前
加菲丰丰应助猫橘汽水采纳,获得30
9秒前
阳光海云完成签到,获得积分10
9秒前
10秒前
攒一口袋星星完成签到,获得积分10
10秒前
alwry完成签到,获得积分10
10秒前
eyebrow完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
小胖鱼完成签到,获得积分20
11秒前
Grayball应助啊这啥啊这是采纳,获得10
12秒前
cf完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740