Artificial intelligence grading of breast cancer: a promising method to refine prognostic classification for management precision

乳腺癌 分级(工程) 人工智能 卷积神经网络 医学 肿瘤科 队列 内科学 癌症 机器学习 计算机科学 生物 生态学
作者
Khloud A. Elsharawy,Thomas A. Gerds,Emad A. Rakha,Leslie W. Dalton
出处
期刊:Histopathology [Wiley]
卷期号:79 (2): 187-199 被引量:17
标识
DOI:10.1111/his.14354
摘要

Artificial intelligence (AI)-based breast cancer grading may help to overcome perceived limitations of human assessment. Here, the potential value of AI grade was evaluated at the molecular level and in predicting patient outcome.A supervised convolutional neural network (CNN) model was trained on images of 612 breast cancers from The Cancer Genome Atlas (TCGA). The test set, obtained from the Cooperative Human Tissue Network (CHTN), comprised 1058 cancers with corresponding survival data. Upon reversal, a CNN was trained from images of 1537 CHTN cancers and tested on 397 TCGA cancers. In TCGA, mRNA models were trained using AI grade and Nottingham grade (NG) as labels. Performance of mRNA models in predicting patient outcome was evaluated using data from 1807 cancers from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort. In selecting images for training, nucleolar prominence determined high- versus low-grade cancer cells. In CHTN, NG corresponded to significant survival stratification in stages 1, 2 and 3 cancers, while AI grade showed significance in stages 1 and 2 and borderline in stage 3 tumours. In METABRIC, the mRNA model trained from AI grade was not significantly different to the NG-based model. The gene which best described AI grade was TRIP13, a gene involved with mitotic spindle assembly.An AI grade trained from the morphologically distinctive feature of nucleolar prominence could transmit significant patient outcome information across three independent patient cohorts. AI grade shows promise in gene discovery and for second opinions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助Fan采纳,获得10
刚刚
高兴的丝完成签到 ,获得积分10
1秒前
2秒前
3秒前
桐桐应助Ambition9采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
federish发布了新的文献求助10
6秒前
123发布了新的文献求助10
6秒前
orixero应助auggy采纳,获得10
7秒前
五五五发布了新的文献求助10
7秒前
孙豪泽完成签到,获得积分10
7秒前
学术小废物完成签到,获得积分10
7秒前
喵咪关注了科研通微信公众号
8秒前
ldz发布了新的文献求助10
8秒前
9秒前
追寻发布了新的文献求助10
10秒前
花雨黎伞发布了新的文献求助10
12秒前
12秒前
香雪儿发布了新的文献求助10
12秒前
perfumei完成签到,获得积分10
12秒前
13秒前
浮游应助白汐采纳,获得10
13秒前
完美世界应助轻松雁蓉采纳,获得10
13秒前
14秒前
14秒前
15秒前
风中珩发布了新的文献求助20
15秒前
15秒前
15秒前
邸jian完成签到 ,获得积分10
15秒前
16秒前
鲸落发布了新的文献求助10
16秒前
小林发布了新的文献求助10
16秒前
sys549发布了新的文献求助10
17秒前
18秒前
optics1992完成签到,获得积分10
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5343888
求助须知:如何正确求助?哪些是违规求助? 4479371
关于积分的说明 13942689
捐赠科研通 4376426
什么是DOI,文献DOI怎么找? 2404779
邀请新用户注册赠送积分活动 1397135
关于科研通互助平台的介绍 1369486