Artificial intelligence grading of breast cancer: a promising method to refine prognostic classification for management precision

乳腺癌 分级(工程) 人工智能 卷积神经网络 医学 肿瘤科 队列 内科学 癌症 机器学习 计算机科学 生物 生态学
作者
Khloud A. Elsharawy,Thomas A. Gerds,Emad A. Rakha,Leslie W. Dalton
出处
期刊:Histopathology [Wiley]
卷期号:79 (2): 187-199 被引量:17
标识
DOI:10.1111/his.14354
摘要

Artificial intelligence (AI)-based breast cancer grading may help to overcome perceived limitations of human assessment. Here, the potential value of AI grade was evaluated at the molecular level and in predicting patient outcome.A supervised convolutional neural network (CNN) model was trained on images of 612 breast cancers from The Cancer Genome Atlas (TCGA). The test set, obtained from the Cooperative Human Tissue Network (CHTN), comprised 1058 cancers with corresponding survival data. Upon reversal, a CNN was trained from images of 1537 CHTN cancers and tested on 397 TCGA cancers. In TCGA, mRNA models were trained using AI grade and Nottingham grade (NG) as labels. Performance of mRNA models in predicting patient outcome was evaluated using data from 1807 cancers from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort. In selecting images for training, nucleolar prominence determined high- versus low-grade cancer cells. In CHTN, NG corresponded to significant survival stratification in stages 1, 2 and 3 cancers, while AI grade showed significance in stages 1 and 2 and borderline in stage 3 tumours. In METABRIC, the mRNA model trained from AI grade was not significantly different to the NG-based model. The gene which best described AI grade was TRIP13, a gene involved with mitotic spindle assembly.An AI grade trained from the morphologically distinctive feature of nucleolar prominence could transmit significant patient outcome information across three independent patient cohorts. AI grade shows promise in gene discovery and for second opinions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐乌发布了新的文献求助10
1秒前
JINYUBAO完成签到,获得积分10
1秒前
JamesPei应助ZSH采纳,获得10
3秒前
3秒前
Jasper应助ALVIN采纳,获得10
4秒前
婕婕子完成签到,获得积分10
6秒前
7秒前
南海牧鲸人完成签到,获得积分10
7秒前
Hoshi发布了新的文献求助20
8秒前
敏感雅琴发布了新的文献求助10
8秒前
111完成签到,获得积分10
8秒前
9秒前
ding应助ins采纳,获得20
9秒前
shalltear完成签到,获得积分10
10秒前
珏卿发布了新的文献求助10
10秒前
Lyven完成签到 ,获得积分10
12秒前
伶俐乌完成签到,获得积分10
12秒前
xjy完成签到,获得积分10
13秒前
able1325完成签到 ,获得积分10
13秒前
敏感笑槐发布了新的文献求助10
15秒前
527完成签到,获得积分10
16秒前
乔乔发布了新的文献求助10
16秒前
敏感雅琴完成签到,获得积分10
17秒前
神勇秋白发布了新的文献求助10
19秒前
阿宋完成签到 ,获得积分10
20秒前
21秒前
优秀沛春完成签到,获得积分10
21秒前
6260完成签到,获得积分10
23秒前
24秒前
25秒前
YXYWZMSZ完成签到,获得积分10
26秒前
teni发布了新的文献求助10
26秒前
26秒前
ins发布了新的文献求助20
26秒前
29秒前
我在完成签到,获得积分10
29秒前
Mottri完成签到 ,获得积分10
30秒前
紫津发布了新的文献求助10
30秒前
君衡发布了新的文献求助10
31秒前
YXYWZMSZ发布了新的文献求助10
31秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207532
求助须知:如何正确求助?哪些是违规求助? 4385388
关于积分的说明 13656844
捐赠科研通 4243980
什么是DOI,文献DOI怎么找? 2328541
邀请新用户注册赠送积分活动 1326226
关于科研通互助平台的介绍 1278425