Artificial intelligence grading of breast cancer: a promising method to refine prognostic classification for management precision

乳腺癌 分级(工程) 人工智能 卷积神经网络 医学 肿瘤科 队列 内科学 癌症 机器学习 计算机科学 生物 生态学
作者
Khloud A. Elsharawy,Thomas A. Gerds,Emad A. Rakha,Leslie W. Dalton
出处
期刊:Histopathology [Wiley]
卷期号:79 (2): 187-199 被引量:17
标识
DOI:10.1111/his.14354
摘要

Artificial intelligence (AI)-based breast cancer grading may help to overcome perceived limitations of human assessment. Here, the potential value of AI grade was evaluated at the molecular level and in predicting patient outcome.A supervised convolutional neural network (CNN) model was trained on images of 612 breast cancers from The Cancer Genome Atlas (TCGA). The test set, obtained from the Cooperative Human Tissue Network (CHTN), comprised 1058 cancers with corresponding survival data. Upon reversal, a CNN was trained from images of 1537 CHTN cancers and tested on 397 TCGA cancers. In TCGA, mRNA models were trained using AI grade and Nottingham grade (NG) as labels. Performance of mRNA models in predicting patient outcome was evaluated using data from 1807 cancers from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort. In selecting images for training, nucleolar prominence determined high- versus low-grade cancer cells. In CHTN, NG corresponded to significant survival stratification in stages 1, 2 and 3 cancers, while AI grade showed significance in stages 1 and 2 and borderline in stage 3 tumours. In METABRIC, the mRNA model trained from AI grade was not significantly different to the NG-based model. The gene which best described AI grade was TRIP13, a gene involved with mitotic spindle assembly.An AI grade trained from the morphologically distinctive feature of nucleolar prominence could transmit significant patient outcome information across three independent patient cohorts. AI grade shows promise in gene discovery and for second opinions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叁柒完成签到,获得积分20
1秒前
2秒前
buno应助yao采纳,获得10
3秒前
大萨达发布了新的文献求助10
3秒前
4秒前
张文静发布了新的文献求助10
5秒前
6秒前
mimi发布了新的文献求助10
7秒前
7秒前
斯文败类应助大方的寒烟采纳,获得10
7秒前
sunwei完成签到,获得积分10
8秒前
西兰花完成签到,获得积分20
9秒前
少年旭完成签到,获得积分10
9秒前
11秒前
12秒前
13秒前
zho应助FengGo采纳,获得10
14秒前
迢迢笙箫完成签到,获得积分10
15秒前
17秒前
17秒前
科研通AI2S应助申木采纳,获得10
18秒前
脑洞疼应助赖不可采纳,获得10
18秒前
18秒前
CipherSage应助euphoria采纳,获得10
18秒前
19秒前
星城发布了新的文献求助10
19秒前
20秒前
零零零零完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
李健应助朝朝采纳,获得10
21秒前
22秒前
22秒前
我是老大应助哦密密麻麻采纳,获得10
23秒前
buno应助活泼溪流采纳,获得10
23秒前
buno应助活泼溪流采纳,获得10
23秒前
星星发布了新的文献求助10
23秒前
buno应助活泼溪流采纳,获得10
23秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264696
求助须知:如何正确求助?哪些是违规求助? 2904692
关于积分的说明 8331249
捐赠科研通 2575017
什么是DOI,文献DOI怎么找? 1399626
科研通“疑难数据库(出版商)”最低求助积分说明 654521
邀请新用户注册赠送积分活动 633221