Artificial intelligence grading of breast cancer: a promising method to refine prognostic classification for management precision

乳腺癌 分级(工程) 人工智能 卷积神经网络 医学 肿瘤科 队列 内科学 癌症 机器学习 计算机科学 生物 生态学
作者
Khloud A. Elsharawy,Thomas A. Gerds,Emad A. Rakha,Leslie W. Dalton
出处
期刊:Histopathology [Wiley]
卷期号:79 (2): 187-199 被引量:17
标识
DOI:10.1111/his.14354
摘要

Artificial intelligence (AI)-based breast cancer grading may help to overcome perceived limitations of human assessment. Here, the potential value of AI grade was evaluated at the molecular level and in predicting patient outcome.A supervised convolutional neural network (CNN) model was trained on images of 612 breast cancers from The Cancer Genome Atlas (TCGA). The test set, obtained from the Cooperative Human Tissue Network (CHTN), comprised 1058 cancers with corresponding survival data. Upon reversal, a CNN was trained from images of 1537 CHTN cancers and tested on 397 TCGA cancers. In TCGA, mRNA models were trained using AI grade and Nottingham grade (NG) as labels. Performance of mRNA models in predicting patient outcome was evaluated using data from 1807 cancers from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort. In selecting images for training, nucleolar prominence determined high- versus low-grade cancer cells. In CHTN, NG corresponded to significant survival stratification in stages 1, 2 and 3 cancers, while AI grade showed significance in stages 1 and 2 and borderline in stage 3 tumours. In METABRIC, the mRNA model trained from AI grade was not significantly different to the NG-based model. The gene which best described AI grade was TRIP13, a gene involved with mitotic spindle assembly.An AI grade trained from the morphologically distinctive feature of nucleolar prominence could transmit significant patient outcome information across three independent patient cohorts. AI grade shows promise in gene discovery and for second opinions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奈克罗普陀西斯完成签到,获得积分10
3秒前
313发布了新的文献求助10
4秒前
4秒前
飘逸灰狼完成签到 ,获得积分10
4秒前
无花果应助捞鱼采纳,获得10
4秒前
5秒前
6秒前
机灵班应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
6秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
完美又槐应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
完美又槐应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
xxfsx应助科研通管家采纳,获得10
7秒前
隋骐泽发布了新的文献求助10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
终梦应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
林晚停应助李1采纳,获得10
8秒前
rr完成签到,获得积分10
10秒前
kook发布了新的文献求助10
10秒前
10秒前
沉默的冬寒完成签到 ,获得积分10
11秒前
11秒前
酷波er应助小短腿飞行员采纳,获得10
12秒前
发疯发布了新的文献求助10
12秒前
龙行天下发布了新的文献求助10
13秒前
14秒前
14秒前
16秒前
18秒前
蓝冰发布了新的文献求助10
19秒前
邵梁健发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818