亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer

计算机科学 多样性(控制论) 人工智能 航程(航空) 地点 机器学习 材料科学 语言学 哲学 复合材料
作者
Tsz Wai Ko,Jonas A. Finkler,Stefan Goedecker,Jörg Behler
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (4): 808-817 被引量:96
标识
DOI:10.1021/acs.accounts.0c00689
摘要

ConspectusThe development of first-principles-quality machine learning potentials (MLP) has seen tremendous progress, now enabling computer simulations of complex systems for which sufficiently accurate interatomic potentials have not been available. These advances and the increasing use of MLPs for more and more diverse systems gave rise to new questions regarding their applicability and limitations, which has constantly driven new developments. The resulting MLPs can be classified into several generations depending on the types of systems they are able to describe. First-generation MLPs, as introduced 25 years ago, have been applicable to low-dimensional systems such as small molecules. MLPs became a practical tool for complex systems in chemistry and materials science with the introduction of high-dimensional neural network potentials (HDNNP) in 2007, which represented the first MLP of the second generation. Second-generation MLPs are based on the concept of locality and express the total energy as a sum of environment-dependent atomic energies, which allows applications to very large systems containing thousands of atoms with linearly scaling computational costs. Since second-generation MLPs do not consider interactions beyond the local chemical environments, a natural extension has been the inclusion of long-range interactions without truncation, mainly electrostatics, employing environment-dependent charges establishing the third MLP generation. A variety of second- and, to some extent, also third-generation MLPs are currently the standard methods in ML-based atomistic simulations.In spite of countless successful applications, in recent years it has been recognized that the accuracy of MLPs relying on local atomic energies and charges is still insufficient for systems with long-ranged dependencies in the electronic structure. These can, for instance, result from nonlocal charge transfer or ionization and are omnipresent in many important types of systems and chemical processes such as the protonation and deprotonation of organic and biomolecules, redox reactions, and defects and doping in materials. In all of these situations, small local modifications can change the system globally, resulting in different equilibrium structures, charge distributions, and reactivity. These phenomena cannot be captured by second- and third-generation MLPs. Consequently, the inclusion of nonlocal phenomena has been identified as a next key step in the development of a new fourth generation of MLPs. While a first fourth-generation MLP, the charge equilibration neural network technique (CENT), was introduced in 2015, only very recently have a range of new general-purpose methods applicable to a broad range of physical scenarios emerged. In this Account, we show how fourth-generation HDNNPs can be obtained by combining the concepts of CENT and second-generation HDNNPs. These new MLPs allow for a highly accurate description of systems where nonlocal charge transfer is important.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raunio完成签到,获得积分10
2秒前
tyh330011完成签到,获得积分20
4秒前
11秒前
ma完成签到,获得积分10
13秒前
明理雨真发布了新的文献求助10
15秒前
笑点低的牛二完成签到 ,获得积分20
15秒前
30秒前
鬼见愁完成签到,获得积分10
32秒前
33秒前
sisi发布了新的文献求助10
33秒前
TX_W发布了新的文献求助10
38秒前
48秒前
LONG发布了新的文献求助10
48秒前
sisi完成签到,获得积分10
50秒前
朱彤发布了新的文献求助10
53秒前
烟云墨雨完成签到 ,获得积分10
57秒前
TX_W完成签到 ,获得积分10
1分钟前
我是老大应助俏皮的飞烟采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
Leo完成签到 ,获得积分10
1分钟前
1分钟前
俏皮的飞烟完成签到,获得积分20
1分钟前
1分钟前
孙文杰完成签到 ,获得积分10
1分钟前
荷兰香猪完成签到,获得积分10
1分钟前
ZX801完成签到 ,获得积分10
1分钟前
早睡早起完成签到 ,获得积分10
1分钟前
求求你别摆烂了完成签到 ,获得积分10
1分钟前
pterionGao完成签到 ,获得积分10
2分钟前
朱彤完成签到,获得积分10
2分钟前
2分钟前
itachi完成签到 ,获得积分10
2分钟前
高贵的荧完成签到,获得积分10
2分钟前
2分钟前
chloe777完成签到,获得积分10
2分钟前
高贵的荧发布了新的文献求助10
2分钟前
2分钟前
2分钟前
zhj发布了新的文献求助10
2分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130122
求助须知:如何正确求助?哪些是违规求助? 2780917
关于积分的说明 7750386
捐赠科研通 2436099
什么是DOI,文献DOI怎么找? 1294525
科研通“疑难数据库(出版商)”最低求助积分说明 623708
版权声明 600570